Sains Malaysiana 49(11)(2020): 2821-2832

http://dx.doi.org/10.17576/jsm-2020-4911-21

 

First-Principles Study of Structural, Electronic and Thermoelectric Properties of Ni-Doped Bi2Se3

(Kajian Prinsip Pertama tentang Sifat Struktur, Elektronik dan Termoelektrik bagi Bi2Se3 Ni-Terdop)

 

MUHAMMAD ZAMIR MOHYEDIN1,2, MOHAMAD FARIZ MOHAMAD TAIB1,2*, AFIQ RADZWAN3, MASNAWI MUSTAFFA1, AMIRUDDIN SHAARI3, BAKHTIAR UL-HAQ4, OSKAR HASDINOR HASSAN1,5 & MUHD ZU AZHAN YAHYA6

 

1Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia

 

2Ionic, Materials and Devices (iMADE) Research Laboratory, Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia

 

3Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim, Malaysia

 

4Advanced Functional Materials & Optoelectronic Laboratory (AFMOL)

Faculty of Science, King Khalid University, 9004 Abha, Saudi Arabia

 

5Faculty of Art & Design, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia

 

6Faculty of Defence Science & Technology, Universiti Pertahanan Nasional Malaysia, 57100 Kuala Lumpur, Federal Territory, Malaysia

 

Received: 10 April 2020/Accepted: 20 May 2020

 

ABSTRACT

Direct conversion of waste heat to electrical energy could address present energy challenges. Bi2Se3 is one of few thermoelectric materials known to operate at room temperature. Comprehensive analysis using density functional theory was conducted to explore the effect of nickel doping on structural, electronic, and thermoelectric properties of Bi2Se3. Local density approximation (LDA) was used with an addition of spin-orbit coupling (SOC) and van der Waals interaction scheme consideration. Analysis of the effect of SOC was elaborated. It was found that nickel has changed the crystal structure of Bi2Se3. Nickel has also changed band structure and density of state that alter the thermoelectric performance. The decreased band gap has decreased the thermopower. However, it gives advantages to the improvement of electrical conductivity. Higher electrical conductivity has risen thermal conductivity. Despite the decreased thermopower and increased thermal conductivity, the higher electrical conductivity has improved the overall thermoelectric performance of Bi2Se3 when nickel is introduced.

 

Keywords: Density functional theory; electrical conductivity; electronic properties; spin-orbit coupling; thermoelectricity

 

ABSTRAK

Penukaran sisa haba kepada tenaga elektrik dapat menangani cabaran tenaga yang ada pada masa ini. Bi2Se3 adalah salah satu daripada beberapa bahan termoelektrik yang diketahui mampu beroperasi pada suhu bilik. Analisis komprehensif menggunakan teori ketumpatan berfungsi telah dijalankan untuk meneroka kesan pendopan nikel pada sifat struktur, elektronik dan termoelektrik Bi2Se3. Penghampiran ketumpatan setempat (PKS) digunakan dengan mempertimbangkan penambahan gandingan spin-petala (GSP) dan skema interaksivan der Waals. Analisis kesan GSP dijelaskan. Didapati bahawa nikel telah mengubah struktur kristal Bi2Se3. Nikel juga telah menukar struktur jalur dan ketumpatan keadaan yang mengubah prestasi termoelektrik. Penurunan jurang jalur telah menurunkan termokuasa. Walau bagaimanapun, ia memberi kelebihan kepada peningkatan kekonduksian elektrik. Kekonduksian elektrik yang tinggi telah meningkatkan kekonduksian terma. Walaupun termokuasa menurun dan kekonduksian terma meningkat, kekonduksian elektrik yang lebih tinggi telah meningkatkan prestasi termoelektrik keseluruhan Bi2Se3 apabila nikel diperkenalkan.

 

Kata kunci: Gandingan spin-petala; kekonduksian elektrik; sifat elektronik; teori ketumpatan berfungsi; termoelektrik

 

REFERENCES

Adam, A.M., Elshafaie, A., Mohamed, A.E.A., Petkov, P. & Ibrahim, E.M.M. 2018. Thermoelectric properties of Te doped bulk Bi2Se3 system.  Materials Research Express 5(3): 035514.

Aguilera, I., Friedrich, C., Bihlmayer, G. & Blügel, S. 2013. GW study of topological insulators Bi2Se3, Bi2Te3, and Sb2Te3: Beyond the perturbative one-shot approach. Physical Review B 88(4): 045206-1-045206-7.

Ali, Z., Butt, S., Cao, C., Butt, F.K., Tahir, M., Tanveer, M., Aslam, I., Rizwan, M., Idrees, F. & Khalid, S. 2014. Thermochemically evolved nanoplatelets of bismuth selenide with enhanced thermoelectric figure of merit. AIP Advances 4(11): 117129-1-117129-8.

Augustine, S., Ravi, J., Ampili, S., Rasheed, T.M.A., Nair, K.P.R., Endo, T. & Mathai, E. 2003. Effect of Te doping and electron irradiation on thermal diffusivity of Bi2Se3 thin films by photo-thermal technique. Journal of Physics D: Applied Physics 36(8): 994-1000.

Bashir, M.B.A., Said, S.M., Sabri, M.F.M., Miyazaki, Y., Shnawah, D.A.A., Shimada, M. & Elsheikh, M.H. 2018. Enhancement of thermoelectric properties of Yb0.25Co4Sb12 skutterudites through Ni substitution. Sains Malaysiana 47(1): 181-187.

Bejan, A. & Kraus, A.D. 2003. Heat Transfer Handbook. Vol. 1. New York: John Wiley & Sons.

Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D. & Luitz, J. 2001. Computer code WIEN2K. Austria: Vienna University of Technology.

Boledzyuk, V.B., Kovalyuk, Z.D., Kudrinskii, Z.R. & Shevchenko, A.D. 2015. Structural characteristics and magnetic properties of cobalt-intercalated A25 B36 single crystals.  Technical Physics 60(11): 1658-1662.

Cermak, P., Ruleová, P., Holy, V., Prokleska, J., Kucek, V., Pálka, K., Benes, L. & Drasar, C. 2018. Thermoelectric and magnetic properties of Cr-doped single crystal Bi2Se3–search for energy filtering. Journal of Solid State Chemistry 258: 768-775.

Chang, C., Xiao, Y., Zhang, X., Pei, Y., Li, F., Ma, S., Yuan, B., Liu, Y., Gong, S. & Zhao, L.D. 2016. High performance thermoelectrics from earth-abundant materials: Enhanced figure of merit in PbS through nanostructuring grain size.  Journal of Alloys and Compounds 664: 411-416.

Chis, V., Sklyadneva, I.Y., Kokh, K.A., Volodin, V.A., Tereshchenko, O.E. & Chulkov, E.V. 2012. Vibrations in binary and ternary topological insulators: first-principles calculations and raman spectroscopy measurements. Physical Review B 86(17): 174304.

Dresselhaus, G. 1955. Spin-orbit coupling effects in zinc blende structures. Physical Review 100(2): 580-586.

Dun, C., Hewitt, C.A., Huang, H., Xu, J., Montgomery, D.S., Nie, W., Jiang, Q. & Carroll, D.L. 2015. Layered Bi2Se3 nanoplate/polyvinylidene fluoride composite based n-type thermoelectric fabrics.  ACS Applied Materials & Interfaces 7(13): 7054-7059.

Feng, B., Li, Q., Hou, Y., Zhang, C., Jiang, C., Hu, J.,  Xiang, Q., Li, Y., He, Z. &  Fan, X. 2017. Enhanced thermoelectric properties of Sb-doped BiCuSeO due to decreased band gap.  Journal of Alloys and Compounds 712: 386-393.

Hagmann, J.A., Li, X., Chowdhury, S., Dong, S.N., Rouvimov, S., Pookpanratana, S.J., Yu, K.M., Orlova, T.A., Bolin, T.B., Segre, C.U., Seiler, D.G., Richter, C.A., Liu, X., Dobrowolska, M. & Furdyna, J.K. 2017. Molecular beam epitaxy growth and structure of self-assembled Bi2Se3/Bi2MnSe4 multilayer heterostructures. New Journal of Physics 19(8): 085002.

Han, C., Li, Z. & Dou, S. 2014. Recent progress in thermoelectric materials. Chinese Science Bulletin 59(18): 2073-2091.

Hasan, S.W., Said, S.M., Abu Bakar, A.S., Jaffery, H.A. & Sabri, M.F.M. 2018. The role of electrolyte fluidity on the power generation characteristics of thermally driven electrochemical cells. Sains Malaysiana 47(2): 403-408.

Hor, Y.S., Richardella, A., Roushan, P., Xia, Y., Checkelsky, J.G., Yazdani, A., Hasan, M.Z., Ong, N.P. & Cava, R.J. 2009. p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications. Physical Review B 79(19): 195208.

Janíček, P., Drašar, C., Beneš, L. & Lošťák, P. 2009. Thermoelectric properties of Tl‐doped Bi2Se3 single crystals. Crystal Research and Technology 44(5): 505-510.

Kadel, K., Kumari, L., Li, W.Z., Huang, J.Y. & Provencio, P.P. 2011. Synthesis and thermoelectric properties of Bi2Se3 nanostructures. Nanoscale Research Letters 6(1): 57.

Kang, Y., Zhang, Q., Fan, C., Hu, W., Chen, C., Zhang, L., Yu, F., Tian, Y. & Xu, B. 2017. High pressure synthesis and thermoelectric properties of polycrystalline Bi2Se3. Journal of Alloys and Compounds 700: 223-227.

Kulbachinskii, V.A., Kytin, V.G., Kudryashov, A.A & Tarasov, P.M. 2012. Thermoelectric properties of Bi2Te3, Sb2Te3 and Bi2Se3 single crystals with magnetic impurities.  Journal of Solid State Chemistry 193: 47-52.

Kulsi, C., Kargupta, K. & Banerjee, D. 2017. Effect of nickel doping on thermoelectric properties of bismuth selenide. In AIP Conference Proceedings.

Lawal, A. & Shaari, A. 2017. Density functional theory study of electronic properties of Bi2Se3 and Bi2Te3. Malaysian Journal of Fundamental and Applied Sciences 12(3): 99-101.

Lee, M.S. & Mahanti, S.D. 2012. Validity of the rigid band approximation in the study of the thermopower of narrow band gap semiconductors. Physical Review B 85(16): 165149.

Lin, H., Das, T., Okada, Y., Boyer, M.C., Wise, W.D., Tomasik, M., Zhen, B., Hudson, E.W., Zhou, W., Madhavan, V., Ren, C.Y., Ikuta, H. & Bansil, A. 2013. Topological dangling bonds with large spin splitting and enhanced spin polarization on the surfaces of Bi2Se3.  Nano Letters 13(5): 1915-1919.

Lind, H., Lidin, S. & Häussermann, U. 2005. Structure and bonding properties of (Bi2Se3)m(Bi2)n stacks by first-principles density functional theory.  Physical Review B 72(18): 184101.

Madsen, G.K.H. & Singh, D.J. 2006. BoltzTraP. A code for calculating band-structure dependent quantities. Computer Physics Communications 175(1): 67-71.

Martinez, G., Piot, B.A., Hakl, M., Potemski, M., Hor, Y.S., Materna, A., Strzelecka, S.G., Hruban, A., Caha, O., Novak, J., Dubroka, A., Drasar, C. & Orlita, M. 2017. Determination of the energy band gap of Bi2Se3. Scientific Reports 7(1): 6891.

Min, Y., Park, G., Kim, B., Giri, A., Zeng, J., Roh, J.W., Kim, S.I., Lee, K.H. & Jeong, U. 2015. Synthesis of multishell nanoplates by consecutive epitaxial growth of Bi2Se3 and Bi2Te3 nanoplates and enhanced thermoelectric properties. ACS Nano 9(7): 6843-6853.

Min, Y., Roh, J.W., Yang, H., Park, M., Kim, S.I., Hwang, S., Lee, S.M., Lee, K.H. & Jeong, U. 2013. Surfactant‐free scalable synthesis of Bi2Te3 and Bi2Se3 nanoflakes and enhanced thermoelectric properties of their nanocomposites. Advanced Materials 25(10): 1425-1429.

Mirhosseini, H. & Henk, J. 2012. Spin texture and circular dichroism in photoelectron spectroscopy from the topological insulator Bi2Te3: First-principles photoemission calculations. Physical Review Letters 109(3): 036803.

Mishra, S.K., Satpathy, S. & Jepsen, O. 1997. Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide. Journal of Physics: Condensed Matter 9(2): 461-470.

Nakajima, S. 1963. The crystal structure of Bi2Te3− xSex. Journal of Physics and Chemistry of Solids 24(3): 479-485.

Novoselov, K.S., Jiang, Z., Zhang, Y., Morozov, S.V., Stormer, H.L., Zeitler, U., Maan, J.C., Boebinger, G.S., Kim, P. & Geim, A.K. 2007. Room-temperature quantum Hall effect in graphene. Science 315(5817): 1379.

Park, K.H., Mohamed, M., Aksamija, Z. & Ravaioli, U. 2015. Phonon scattering due to van der Waals forces in the lattice thermal conductivity of Bi2Te3 thin films. Journal of Applied Physics 117(1): 015103.

Parker, D. & Singh, D.J. 2011. Potential thermoelectric performance from optimization of hole-doped Bi2Se3. Physical Review X 1(2): 021005.

Perdew, J.P. & Zunger, A. 1981. Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B 23(10): 5048-5079.

Richards, W.G., Trivedi, H.P. & Cooper, D.L. 1981. Spin-Orbit Coupling in Molecules. Oxford: Oxford University Press.

Saeed, Y., Singh, N. & Schwingenschlögl, U. 2014a. Enhanced thermoelectric figure of merit in strained Tl-doped Bi2Se3. Applied Physics Letters 105(3): 031915-031915-4.

Saeed, Y., Singh, N. & Schwingenschlögl, U. 2014b. Thickness and strain effects on the thermoelectric transport in nanostructured Bi2Se3. Applied Physics Letters 104(3): 033105.

Saji, A., Ampili, S., Yang, S.H., Ku, K.J. & Elizabeth, M. 2005. Effects of doping, electron irradiation, H+ and He+ implantation on the thermoelectric properties of Bi2Se3 single crystals. Journal of Physics: Condensed Matter 17(19): 2873.

Shi, H., Parker, D., Du, M.H. & Singh, D.J. 2015. Connecting thermoelectric performance and topological-insulator behavior: Bi2Te3 and Bi2Te2 Se from first principles. Physical Review Applied 3(1): 014004.

Sun, G.L., Li, L.L., Qin, X.Y., Li, D., Zou, T.H., Xin, H.X., Ren, B.J., Zhang, J., Li, Y.Y. & Li, X.J. 2015a. Enhanced thermoelectric performance of nanostructured topological insulator Bi2Se3. Applied Physics Letters 106(5): 053102.

Sun, G., Qin, X., Li, D., Zhang, J., Ren, B., Zou, T., Xin, H., Paschen, S.B. & Yan, X. 2015b. Enhanced thermoelectric performance of n-type Bi2Se3 doped with Cu. Journal of Alloys and Compounds 639: 9-14.

Sun, Y., Cheng, H., Gao, S., Liu, Q., Sun, Z., Xiao, C., Wu, C., Wei, S. & Xie, Y. 2012. Atomically thick bismuth selenide freestanding single layers achieving enhanced thermoelectric energy harvesting. Journal of the American Chemical Society 134(50): 20294-20297.

Tan, G., Shi, F., Hao, S., Chi, H., Zhao, L.D., Uher, C., Wolverton, C., Dravid, V.P. & Kanatzidis, M.G. 2015. Codoping in SnTe: Enhancement of thermoelectric performance through synergy of resonance levels and band convergence.  Journal of the American Chemical Society 137(15): 5100-5112.

Tan, Q., Zhao, L.D., Li, J.F., Wu, C.F., Wei, T.R., Xing, Z.B. & Kanatzidis, M.G. 2014. Thermoelectrics with earth abundant elements: Low thermal conductivity and high thermopower in doped SnS. Journal of Materials Chemistry A 2(41): 17302-17306.

Urkude, R.R., Sagdeo, A., Rawat, R., Choudhary, R.J., Asokan, K., Ojha, S. & Palikundwar, U.A. 2018. Observation of Kondo behavior in the single crystals of Mn-doped Bi2Se3 topological insulator.  AIP Advances 8(4): 045315.

Valla, T., Pan, Z.H., Gardner, D., Lee, Y.S. & Chu, S. 2012. Photoemission spectroscopy of magnetic and nonmagnetic impurities on the surface of the Bi2Se3 topological insulator.  Physical Review Letters 108(11): 117601.

Wang, B.T., Souvatzis, P., Eriksson, O. & Zhang, P. 2015. Lattice dynamics and chemical bonding in Sb2Te3 from first-principles calculations. The Journal of Chemical Physics 142(17): 174702.

Wang, B.T. & Zhang, P. 2012. Phonon spectrum and bonding properties of Bi2Se3: Role of strong spin-orbit interaction. Applied Physics Letters 100(8): 082109.

Xu, N., Xu, Y. & Zhu, J. 2017. Topological insulators for thermoelectrics. npj Quantum Materials 2(1): 51.

 

*Corresponding author; email: mfariz@uitm.edu.my

 

 

 

 

 

previous