Sains Malaysiana 49(11)(2020):
2871-2880
http://dx.doi.org/10.17576/jsm-2020-4911-25
Simultaneous
Flow of Two Immiscible Fractional Maxwell Fluids with the Clear Region and
Homogeneous Porous Medium
(Aliran Serentak bagi Dua Bendalir Maxwell Pecahan tak Tercampur dengan Rantau Jernih dan Medium Berliang Homogen)
ABDUL
RAUF1*, QAMMAR RUBBAB2, DUMITRU VIERU3 &
ALI MAJEED1
1Department of Computer Science and
Engineering, Air University Multan Campus, Multan, 60000, Pakistan
2Department of Mathematics, The
Woman University Multan, Pakistan
3Department of Theoretical Mechanics, Technical
University of Iasi 700050, Romania
Received:
2 December 2019/Accepted: 31 May 2020
ABSTRACT
One-dimensional
transient flows of two layers immiscible fractional Maxwell fluids in a
rectangular channel is investigated. The studied problem is based on a
mathematical model focused on the fluids with memory described by a
constitutive equation with time-fractional Caputo derivative. The flow domain
is considered two regions namely one clear region and another filled with a homogeneous
porous medium saturated by a generalized Maxwell fluid. Semi-analytical and
analytical solutions to the problem with initial-boundary conditions and interface
fluid-fluid conditions are determined by employing the integral transform method
(the Laplace transforms and the finite sine-Fourier
transform). Talbot’s algorithm for the numerical inversion of the Laplace
transforms is employed. The memory effects and the influence of the porosity
coefficient on the fluid motion are studied. Numerical results and graphical
illustrations obtained using the Mathcad software are utilised to analyze the fluid behavior. The influence of the memory on the fluid motion
is significant at the beginning of motion and it is attenuated as time passes
by.
Keywords:
Analytical and semi-analytical solutions; fractional Maxwell fluids; memory
effects; simultaneous clear and porous medium; two-layered immiscible fluids
ABSTRAK
Aliran sementara satu dimensi bagi dua lapisan bendalir Maxwell pecahan yang tidak tercampur dalam saluran segi empat dikaji. Masalah yang dikaji berdasarkan model matematik yang berfokus pada bendalir dengan memori yang diperihalkan oleh persamaan juzuk dengan terbitan Caputo pecahan masa. Domain aliran dianggap dua rantau iaitu satu rantau jernih dan satu lagi diisi dengan medium berliang homogen yang tepu oleh bendalir Maxwell teritlak. Penyelesaian semi-analitik dan analitis untuk masalah dengan keadaan sempadan awal dan keadaan antara muka bendalir ditentukan dengan menggunakan kaedah penjelmaan kamiran (jelmaan Laplace dan jelmaan sinus-Fourier terhingga). Algoritma Talbot untuk songsangan berangka bagi jelmaan ‘Laplace’ digunakan. Kesan memori dan pengaruh pekali keliangan pada pergerakan bendalir dikaji. Hasil berangka dan ilustrasi grafik yang diperoleh menggunakan perisian Mathcad digunakan untuk menganalisis telatah bendalir. Pengaruh memori pada gerakan bendalir adalah signifikan pada awal gerakan dan ia dilemahkan apabila masa berlalu.
Kata kunci: Bendalir Maxwell pecahan; dua lapisan bendalir tak tercampur; kesan memori; penyelesaian analitik dan semi-analitik; serentak jernih dan medium berliang
REFERENCES
Abate, J. & Valkó, P.P. 2004. Multi‐precision Laplace transform inversion. International Journal for
Numerical Methods in Engineering 60(5): 979-993.
Alishaev, M.G. & Mirzadjanzade,
A.K. 1975. For the calculation of delay phenomenon in filtration theory. Izvestiya Vysshikh Uchebnykh Zavedeniy. Neft’i Gaz 6: 71-78.
Aliyu, A.M., Baba, Y.D., Lao, L., Yeung, H. & Kim,
K.C. 2017. Interfacial friction in upward annular gas-liquid two-phase flow in
pipes. Experimental Thermal and Fluid Science 84(2017): 90-109.
Ashraf, S. & Phirani, J. 2019. Capillary displacement of viscous liquids
in a multi-layered porous medium. Soft Matter 15(9): 2057-2070.
Barannyk, L.L., Papageorgiou,
D.T., Petropoulos, P.G. & Vanden-Broeck, J.M.
2015. Nonlinear dynamics and wall touch-up in unstably stratified multilayer
flows in horizontal channels under the action of electric fields. SIAM
Journal on Applied Mathematics 75(1): 92-113.
Bear, J. 2013. Dynamics of Fluids in Porous Media. New York: Courier Corporation. pp.
1-1757.
Bracewell, R.N. & Bracewell, R.N.
1986. The Fourier Transform and Its Applications (Vol. 31999).
New York: McGraw-Hill. pp. 1-368.
Caputo, M. 1967. Linear
models of dissipation whose Q is almost frequency independent II. Geophysical Journal International 13(5): 529-539.
Caputo, M. & Fabrizio, M. 2015. A new definition of fractional
derivative without singular kernel. Progress in Fractional Differentiation
and Application 1(2): 1-13.
Dingfelder, B. & Weideman,
J.A.C. 2015. An improved Talbot method for numerical Laplace transform
inversion. Numerical Algorithms 68(1): 167-183.
Dullien, F.A.
2012. Porous Media: Fluid Transport and Pore Structure. London: Academic
Press. pp. 1-567.
Friedrich, C.H.R. 1991.
Relaxation and retardation functions of the Maxwell model with fractional
derivatives. Rheologica Acta 30(2): 151-158.
Funahashi, H., Kirkland, K.V., Hayashi, K., Hosokawa, S.
& Tomiyama, A. 2018. Interfacial and wall friction factors of swirling annular flow in a
vertical pipe. Nuclear Engineering and Design 330: 97-105.
Gin, C. & Daripa, P. 2015. Stability results for multi-layer radial
Hele-Shaw and porous media flows. Physics of Fluids 27(1): 012101.
Govindarajan, R. 2004. Effect of miscibility on the linear instability of
two-fluid channel flow. International Journal of Multiphase Flow 30(10): 1177-1192.
Hansen, A., Sinha, S., Bedeaux, D., Kjelstrup, S., Gjennestad, M.A. & Vassvik,
M. 2018. Relations between seepage velocities in immiscible, incompressible
two-phase flow in porous media. Transport in Porous Media 125(3):
565-587.
Hisham, M.D., Rauf, A., Vieru,
D. & Awan, A.U. 2018. Analytical and semi-analytical solutions to flows of
two immiscible Maxwell fluids between moving plates. Chinese Journal of
Physics 56(6): 3020-3032.
Hristov, J. 2017. Transient space-fractional diffusion
with a power-law super diffusivity: Approximate integral-balance approach. Fundamenta Informaticae 151(1-4): 371-388.
Hristov, J. 2019. Response functions in linear
viscoelastic constitutive equations and related fractional operators. Mathematical
Modelling of Natural Phenomena 14(3): 305.
Joseph, D.D. & Renardy, Y.Y. 1995. Fundamentals of two-fluid dynamics. Journal
of Fluid Mechanics 282: 405-405.
Kalogirou, A. & Blyth, M.G. 2019. The role of soluble
surfactants in the linear stability of two-layer flow in a channel. Journal
of Fluid Mechanics 873: 18-48.
Khashi’Ie, N.S., Arifin, N.M., Pop, I. & Nazar, R. 2020. Thermal Maranrgoni flow past a permeable stretching/shrinking sheet in a hybrid Cu-Al2O3/water nanofluid. Sains Malaysiana49(1): 211-222.
Khan, Z., Islam, S., Shah,
R.A. & Khan, I. 2016. Flow and heat transfer of two immiscible fluids in
double-layer optical fiber coating. Journal of Coatings Technology and
Research 13(6): 1055-1063.
Khuzhayorov, B., Auriault, J.L.
& Royer, P. 2000. Derivation of macroscopic filtration law for transient
linear viscoelastic fluid flow in porous media. International Journal of
Engineering Science 38(5): 487-504.
Kim, Y., Choi, H., Park, Y.G., Jang,
J. & Ha, M.Y. 2019. Numerical study on the immiscible two-phase flow in a nano-channel using a molecular-continuum hybrid
method. Journal of Mechanical Science and Technology 33(9):
4291-4302.
Lake, L.W. 1989. Enhanced
Oil Recovery. Englewood Cliffs, New Jersey: Prentice Hall.
Le Meur, H. 1997. Non-uniqueness
and linear stability of the one-dimensional flow of multiple viscoelastic
fluids. ESAIM: Mathematical Modelling and Numerical Analysis 31(2):
185-211.
Liu, J. & Pan, D. 2019. Study on numerical
solution of a variable order fractional differential equation based on
symmetric algorithm. Sains Malaysiana 48(12): 2807-2815.
Lorenzo, C.F. & Hartley, T.T.
1999. Generalized Functions for the Fractional Calculus. NASA. pp. 1-17.
Malek, J., Nečas, J. & Růžička, M. 1993. On the non-Newtonian incompressible
fluids. Mathematical Models and Methods in Applied Sciences 3(1): 35-63.
Nield, D.A. 2000. Modelling fluid flow and heat transfer
in a saturated porous medium. Advances in Decision Sciences 4(2):
165-173.
Papaefthymiou, E.S. & Papageorgiou,
D.T. 2017. Nonlinear stability in three-layer channel flows. Journal of
Fluid Mechanics 829(2017): 1-12.
Podlubny, I. 1999. Fractional
Differential Equations, Vol. 198 of Mathematics in Science and Engineering. New
York and London: Academic Press.
Rauf, A., Mahsud, Y. & Siddique, I. 2019. Multi-layer flows of
immiscible fractional Maxwell fluids in a cylindrical domain. Chinese
Journal of Physics 67(2020): 265-282.
Russell, T.W.F. &
Charles, M.E. 1959. The effect of the less viscous liquid in the laminar flow
of two immiscible liquids. The Canadian Journal of Chemical Engineering 37: 18-24.
Satpathi, D.K., Kumar, B.R. & Chandra, P. 2003.
Unsteady-state laminar flow of viscoelastic gel and air in a channel:
Application to mucus transport in a cough machine simulating trachea. Mathematical
and Computer Modelling 38(1-2): 63-75.
Vafai, K. & Tien, C.L. 1981. Boundary and inertia
effects on flow and heat transfer in porous media. International Journal of
Heat and Mass Transfer 24(2): 195-203.
Ward, K., Zoueshtiagh, F. & Narayanan, R. 2019. Faraday
instability in double-interface fluid layers. Physical Review Fluids 4(4): 043903.
Xiao-Jun, X.J., Srivastava,
H.M. & Machado, J.T. 2016. A new fractional derivative without singular
kernel. Thermal Sciences 20(2): 753-756.
Xue, C. & Nie, J. 2008.
Exact solutions of Rayleigh-Stokes problem for heated generalized Maxwell fluid
in a porous half-space. Mathematical Problems in Engineering 1(2008):
1-10.
Yih, C.S. 1967. Instability due to viscosity
stratification. Journal of Fluid Mechanics 27(2): 337-352.
*Corresponding author; email: attari_ab092@yahoo.com
|