Sains
Malaysiana 49(12)(2020): 2913-2925
http://dx.doi.org/10.17576/jsm-2020-4912-04
Rapid ESKAPE Pathogens Detection Method using
Tapered Dielectrophoresis Electrodes via Crossover Frequency Analysis
(Kaedah Pengesanan Pantas Patogen ESKAPE menggunakan Elektrod Dielektroforesis Tirus melalui Analisis Frekuensi Pindah
Silang)
MUHAMMAD KHAIRULANWAR ABDUL RAHIM1*, NUR MAS AYU JAMALUDIN1,
JACINTA SANTHANAM2, AZRUL AZLAN HAMZAH1 & MUHAMAD
RAMDZAN BUYONG1
1Institute of Microengineering and Nanoelectronics (IMEN), Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300 Kuala
Lumpur, Federal Territory, Malaysia
Received: 2 June 2020/Accepted: 15 July 2020
ABSTRACT
This paper
introduces the versatile of an electrokinetic technique by using the
non-uniform electric field for dielectrophoresis (DEP) application. This
technique is defined as electromicrofluidics. The potential application for
portable and real time detection method of Enterococcus faecium (EF), Staphylococcus aureus (SA), Klebsiella pneumoniae (KP), Acinetobacter baumannii
(AB), Pseudomonas aeruginosa (PA) and Enterobacter aerogenes (EA), which are
the (ESKAPE) bacteria. The MATLAB analytical modelling was used in simulating
the polarisation factor and velocities of bacteria based on Clausius-Mossotti
factor (CMF). The validation of CMF simulation through the DEP experimental can
be quantified based on the response of alternating current (AC) voltage applied
using 6 voltage peak to peak (Vp-p) to their input frequencies from
100 to 15000 kHz. The droplet method was deployed to place properly 0.2 μL
of sample onto DEP microelectrode. The velocities and crossover frequency (fxo)
ranges of bacteria were determined through bacteria trajectory in specific time
interval monitored by microscope attached with eyepiece camera. The applied
range of input frequencies from 100 to 15000 kHz at 6 Vp-p for each bacteria were successfully identified the unique
ranges of frequencies response for detection application. The advantages of
this works are selective with rapid capability for multidrug resistant (MDR)
bacteria detection application.
Keywords: Crossover frequency (fxo); dielectrophoresis; ESKAPE bacteria
ABSTRAK
Makalah ini memperkenalkan satu teknik elektrokinetik yang menggunakan
medan elektrik secara tidak seragam iaitu dielektroforesis (DEP). Teknik ini ditakrifkan sebagai elektromikrofluidik. Berpotensi
bagi aplikasi secara mudah alih dan pada masa nyata untuk pengesanan Enterococcus faecium
(EF), Staphylococcus aureus (SA), Klebsiella pneumoniae (KP), Acinetobacter
baumannii (AB), Pseudomonas aeruginosa (PA) dan Enterobacter aerogenes
(EA) yang merupakan bakteria (ESKAPE). Pemodelan analitik MATLAB digunakan
dalam mensimulasi faktor polarisasi dan halaju bakteria berdasarkan faktor
Clasius-Mossotti (CMF). Pengesahan simulasi CMF melalui uji kaji DEP dapat
dihitung berdasarkan tindak balas voltan arus ulang alik (AC) yang menggunakan
6 volt puncak ke puncak (Vp-p) terhadap frekuensi inputnya dari 100 sehingga
15000 kHz. Kaedah titisan digunakan untuk menempatkan 0.2 μL sampel ke
atas permukaan mikroelektrod DEP dengan tepat. Julat halaju dan frekuensi
pindah silang (fxo) bakteria ditentukan melalui lintasan bakteria
dalam selang waktu tertentu yang dipantau oleh mikroskop yang diintegrasikan
bersama kamera. Julat frekuensi input yang dikenakan terhadap ESKAPE bakteria
dari 100 hingga 15000 kHz pada 6 Vp-p untuk setiap bakteria berjaya dikenal
pasti julat frekuensi pindah silang uniknya sebagai pengesanan. Hasil analisis,
kelebihan penyelidikan ini adalah kebolehan secara selektif dengan kemampuan
pantas untuk aplikasi pengesanan bakteria yang rentan kepada antibiotik (MDR),
ESKAPE. Ini membolehkan aplikasi pengesan bakteria ini dilakukan secara tepat
dengan menggunakan teknik yang mudah pada masa hadapan.
Kata kunci: Dielektroforesis; ESKAPE bacteria; frekuensi pindah silang (fxo)
REFERENCES
Abd Samad,
M.I., Buyong, M.R., Kim, S.S. & Majlis, B.Y. 2019. Dielectrophoresis
velocities response on tapered electrode profile: Simulation and experimental. Microelectronics International 36: 45-53.
Adekanmbi, E.O. & Srivastava, S.K. 2019. Applications of
electrokinetics and dielectrophoresis on designing chip-based disease
diagnostic platforms. In Bio-Inspired
Technology. https://www.intechopen.com/books/bio-inspired-technology/applications-of-electrokinetics-and-dielectrophoresis-on-designing-chip-based-disease-diagnostic-pla. DOI:
10.5772/intechopen.82637.
Almasaudi, S.B. 2018. Acinetobacter spp. as nosocomial pathogens: Epidemiology and resistance features. Saudi Journal of Biological Sciences 25(3): 586-596.
Brooks, L.E.,
Ul-Hasan, S., Chan, B.K. & Sistrom, M.J. 2018. Quantifying the evolutionary
conservation of genes encoding multidrug efflux pumps in the ESKAPE pathogens
to identify antimicrobial drug targets. Msystems 3(3): 1-9.
Buyong, M.R., Kayani, A.A., Hamzah, A.A. & Majlis, B.Y. 2019.
Dielectrophoresis manipulation: Versatile lateral and vertical mechanisms. Biosensors 9(30): 1-26.
Buyong, M.R., Larki, F., Faiz, M.S., Hamzah, A.A., Yunas, J. & Majlis,
B.Y. 2015. Tapered aluminium microelectrode array for improvement of
dielectrophoresis-based particle manipulation. Sensors 15(5): 10973-10990.
Cha, S.H., Kang, S.H., Lee, Y.J., Kim, J.H., Ahn, E.Y., Park, Y. & Cho,
S. 2019. Fabrication of nanoribbons by dielectrophoresis assisted cold welding
of gold nanoparticles on mica substrate. Scientific
Reports 9(1): 1-12.
D'Amico, L., Ajami, N.J., Adachi, J.A., Gascoyne, P.R. & Petrosino,
J.F. 2017. Isolation and concentration of bacteria from blood using
microfluidic membraneless dialysis and dielectrophoresis. Lab on a Chip 17(7): 1340-1348.
De Angelis,
G., Posteraro, B., De Carolis, E., Menchinelli, G., Franceschi, F., Tumbarello,
M., De Pascale, G., Spanu, T. & Sanguinetti, M. 2018. T2 Bacteria magnetic
resonance assay for the rapid detection of ESKAPEc pathogens directly in whole
blood. Journal of Antimicrobial Chemotherapy 73(suppl_4):
iv20-iv26.
Diene, S.M., Merhej, V., Henry, M., El Filali,
A., Roux, V., Robert, C., Azza, S., Gavory, F., Barbe, V., La Scola, B. &
Raoult, D. 2013. The rhizome of the multidrug-resistant Enterobacter aerogenes
genome reveals how new ‘killer bugs’ are created because of a sympatric
lifestyle. Molecular Biology and Evolution 30(2): 369-383.
Du, E. & Manoochehri, S. 2008. Electrohydrodynamic‐mediated
dielectrophoretic separation and transport based on asymmetric electrode pairs. Electrophoresis 29(24): 5017-5025.
Gascoyne, P.R., Shim, S., Noshari, J., Becker, F.F. & Stemke, H.K.
2013. Correlations between the dielectric properties and exterior morphology of
cells revealed by dielectrophoretic field‐flow fractionation. Electrophoresis 34(7): 1042-1050.
Gnanamani, A., Hariharan, P.
& Paul-Satyaseela, M. 2017. Staphylococcus aureus: Overview of
bacteriology, clinical diseases, epidemiology, antibiotic resistance and
therapeutic approach. Frontiers in
Staphylococcus aureus 2017: 4-28.
González-Bello. C. 2017. Antibiotic adjuvants - a strategy to unlock
bacterial resistance to antibiotics. Bioorganic
& Medicinal Chemistry Letters 27(18): 4221-4228.
Honegger, T. & Peyrade, D. 2013. Comprehensive analysis of alternating
current electrokinetics induced motion of colloidal particles in a
three-dimensional microfluidic chip. Journal
of Applied Physics 113(19): 194702.
Jamaludin,
N.M.A., Buyong, M.R., Rahim, M.K., Hamzah, A.A., Mailis, B.Y. & Bais, B.
2018. Dielectrophoresis: Characterization of triple-negative breast cancer
using Clausius-Mossotti factor. In 2018 IEEE
International Conference on Semiconductor Electronics (ICSE) IEEE. pp.
85-88.
Karlowsky, J.A., Hoban, D.J., Hackel, M.A., Lob, S.H. & Sahm, D.F.
2017. Antimicrobial susceptibility of gram-negative ESKAPE pathogens isolated
from hospitalized patients with intra-abdominal and urinary tract infections in
Asia-Pacific countries: SMART 2013-2015. Journal
of Medical Microbiology 66(1): 61-69.
Kikkeri, K.,
Breazeal, M.V.R., Ren, X., Pruden, A. & Agah, M. 2018. A monolithic
dielectrophoresis chip with impedimetric sensing for assessment of pathogen
viability. Journal of Microelectromechanical Systems 27(5):
810-817.
Lalam, C., Tantravahi, S. &
Petla, N. 2015. Identification and characterization of Enterococcus feacium (MCC-2729) with antimicrobial and abiotic stress tolerance properties. International Journal of Current
Microbiology and Applied Science 4(8): 309-322.
Leung, L.M., Fondrie, W.E., Doi, Y., Johnson, J.K., Strickland, D.K., Ernst,
R.K. & Goodlett, D.R. 2017. Identification of the ESKAPE pathogens by mass
spectrometric analysis of microbial membrane glycolipids. Scientific Reports 7(1): 1-10.
Mohammad, K., Buchanan, D.A., Braasch, K., Butler, M. & Thomson, D.J.
2017. CMOS single cell dielectrophoresis cytometer. Sensors and Actuators B:
Chemical 249(2012): 246-255.
Pethig, R.R.
2017. Dielectrophoresis: Theory, Methodology and Biological Applications.
1st ed. London, Ontario: John Wiley & Sons. Inc. pp. 253-254.
Pethig, R.
2013. Dielectrophoresis: An assessment of its potential to aid the research and
practice of drug discovery and delivery. Advanced
Drug Delivery Reviews 65(11-12): 1589-1599.
Phoon, H.Y., Hussin, H., Hussain, B.M., Lim, S.Y., Woon, J.J., Er, Y.X.
& Thong, K.L. 2018. Distribution, genetic diversity and antimicrobial
resistance of clinically important bacteria from the environment of a tertiary
hospital in Malaysia. Journal of Global
Antimicrobial Resistance 14(2018): 132-140.
Rani, F.M., Rahman, N.I.A., Ismail, S., Alattraqchi, A.G., Cleary, D.W.,
Clarke, S.C. & Yeo, C.C. 2017. Acinobacter spp. infections in Malaysia: A review of antimicrobial
resistance trends, mechanisms and epidemiology. Frontiers in Microbiology 8(2017):
1-13.
Rahim, M.K.A.,
Buyong, M.R., Jamaludin, N.M.A., Hamzah, A.A., Siow, K.S. & Majlis, B.Y.
2018. Characterization of permittivity and conductivity for ESKAPE pathogens
detection. IEEE International Conference on Semiconductor Electronics (ICSE).
pp. 132-135.
Rajeshwari, H., Nagveni, S.,
Oli, A., Parashar, D. & Chandrakanth, K.R. 2009. Morphological changes of Klebsiellapneumoniae in response to cefotaxime: A scanning electron microscope study. World Journal of Microbiology and
Biotechnology 25(2009): 2263-2266.
Renner, L.D., Zan, J., Hu, L.I., Martinez, M., Resto, P.J., Siegel, A.C.,
Torres, C., Hall, S.B., Slezak, T.R., Nguyen, T.H. & Weibel, D.B. 2017.
Detection of ESKAPE bacterial pathogens at the point of care using isothermal
DNA-based assays in a portable degas-actuated microfluidic diagnostic assay
platform. Applied and Environmental Microbiology 83(4): e02449.
Sadeghian,
H., Hojjat, Y. & Soleimani, M. 2017. Interdigitated electrode design and
optimization for dielectrophoresis cell separation actuators. Journal of Electrostatics 86: 41-49.
Santajit, S. & Indrawattana, N. 2016. Mechanisms of antimicrobial
resistance in ESKAPE pathogens. BioMed
Research International 2016: 2475067.
Shirmohammadli, V. & Manavizadeh, N. 2018. Numerical modeling of cell
trajectory inside a dielectrophoresis microdevice designed for breast cancer
cell screening. IEEE Sensors Journal 18(20):
8215-8222.
Siebman, C., Velev, O. & Slaveykova, V. 2018.
Probing contaminant-induced alterations in chlorophyll fluorescence by AC-dielectrophoresis-based
2D-algal array. Biosensors 8(1): 2-8.
Vater, S.M., Weiße, S., Maleschlijski, S., Lotz,
C., Koschitzki, F., Schwartz, T., Obst, U. & Rosenhahn, A. 2014. Swimming
behavior of Pseudomonas aeruginosa studied by holographic 3D
tracking. PloS ONE 9(1): e87765.
Xu, S., Wang, Q., Zhang, Q., Zhang, L., Zuo, L., Jiang, J.D. & Hu, H.Y.
2017. Real time detection of ESKAPE pathogens by a nitroreductase-triggered
fluorescence turn-on probe. Chemical
Communications 53(81): 11177-11180.
Yunus, F.W., Buyong, M.R., Yunas, J., Majlis, B.Y. & Hamzah, A.A. 2019.
3-dimensional electric field distributions of castellated and straight
dielectrophoresis electrodes for cell separation. Sains Malaysiana 48(6): 1239-1249.
Yunus, F.W., Hamzah, A.A., Norzin, M.S., Buyong, M.R., Yunas, J. &
Majlis, B.Y. 2018. Dielectrophoresis: Iron deficient anemic red blood cells for
artificial kidney purposes. IEEE
International Conference on Semiconductor Electronics (ICSE). pp. 5-8.
*Corresponding
author; email: muhdramdzan@ukm.edu.my
|