Sains Malaysiana 49(12)(2020): 2941-2950

http://dx.doi.org/10.17576/jsm-2020-4912-06

 

Structural and Photoluminescence Analysis on the Implantation of Carbon and Proton for the Creation of Damage-Assisted Emission in Silicon

(Struktur dan Analisis Fotoluminasi pada Penanaman Karbon dan Proton untuk Penghasilan Pelepasan Kerosakan-Berbantu dalam Silikon)

 

NURUL ELLENA ABDUL RAZAK1, MORGAN MADHUKU2, ISHAQ AHMAD3, BURHANUDDIN YEOP MAJLIS1, CHANG FU DEE1 & DILLA DURYHA BERHANUDDIN1*

 

1Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2iThemba Laboratory for Accelerator Based Science (LABS), Private Bag 11, Wits 2050 Johannesburg, South Africa

 

3NPU-NCP Joint International Research Center on Advanced, Nanomaterials and Defects Engineering, National Centre for Physics, Islamabad 44000, Pakistan

 

Received: 20 July 2020/Accepted: 17 August 2020

 

ABSTRACT

We study the induced defects in the depth profiling of the silicon structure after being implanted with carbon and followed by high energy proton irradiation. It has been reported before that the formation of the optically active point-defect, specifically the G-centre is due to the implantation and irradiation of carbon and proton, respectively. It is crucial to quantify the diffusional broadening of the implanted ion profile especially for proton irradiation process so that the radiation damage evolution can be maximized at the point-defect formation region. Profiling analysis was carried out using computational Stopping and Range of Ions in Matter (SRIM) and Surrey University Sputter Profile Resolution from Energy Deposition (SUSPRE) simulation. The energies of carbon ions adopted for this investigation are 10, 20, 30, and 50 keV, while proton irradiation energy was kept at 2 MeV. Photoluminescence measurements on silicon implanted with carbon at different energies were carried out to study the interrelation between the numbers of vacancies produced during the damage event and the peak emission intensities.

 

Keywords: Carbon; ion implantation; proton; silicon; SRIM

 

ABSTRAK

Kami melaporkan kecacatan dalam profil kedalaman struktur silikon selepas ditanamkan dengan karbon dan diikuti dengan penyinaran proton bertenaga tinggi. Sebelum ini telah dilaporkan bahawa pembentukan kecacatan titik berkeaktifan optik, khususnya pusat-G adalah disebabkan oleh implantasi karbon dan sinaran proton. Adalah penting untuk mengkuantifikasikan pelebaran profil implantasi ion terutamanya untuk proses penyinaran proton supaya evolusi kerosakan radiasi boleh dimaksimumkan di kawasan pembentukan titik kecacatan. Analisis profil dilakukan dengan menggunakan Perhitungan Pengiraan dan Julat Ion dalam Jisim (SRIM) dan simulasi SUSPRE. Tenaga ion karbon yang dikaji adalah 10, 20, 30, dan 50 keV, manakala tenaga penyinaran proton ditetapkan pada 2 MeV. Pengukuran fotoluminasi terhadap silikon yang telah ditanam dengan karbon pada tenaga yang berbeza dilakukan untuk mengkaji hubungan antara jumlah kekosongan yang dihasilkan semasa kejadian kerosakan dengan keamatan pelepasan.

 

Kata kunci: Ion implan; karbon; proton; silikon; SRIM

 

REFERENCES

Alford, T.L., Feldman, L.C. & Mayer, J.W. 2007. Fundamentals of Nanoscale Film Analysis. Boston: Springer Science+Business Media, Inc. pp. 84-104.

Berhanuddin, D.D., Razak, N.E.A., Laurenco, B.Y., Majlis, B.Y. & Homewood, K.P. 2019. G-Centre formation and behaviour in a silicon on insulator platform by carbon ion implantation and proton irradiation. Sains Malaysiana 48(6): 1251-1257.

Berhanuddin, D.D., Lourenço, M.A., Gwilliam, R.M. & Homewood, K.P. 2017. The effect of temperature to the formation of optically active point-defect complex, the carbon G-centre in pre-amorphised and non-amorphised silicon. In IOP Conference Series: Materials Science and Engineering 384(1): 012062.

Berhanuddin, D.D., Lourenço, M.A., Jeynes, C., Milosavljević, M., Gwilliam, R.M. & Homewood, K.P. 2012. Structural analysis of silicon co-implanted with carbon and high proton for the formation of the lasing G-centre. Journal of Applied Physics 112(10): 103110.

Biersack, J.P. 1981. Calculation of projected ranges - analytical solutions and a simple general algorithm. Nuclear Instruments and Methods 182-183(Part 1): 199-206.

Buckley, S.M., Tait, A.N., Moody, G., Primavera, B., Olson, S., Herman, J., Silverman, K.L., Rao, S.P., Nam, S.W., Mirin, R.P. & Shainline, J.M. 2020. Optimization of photoluminescence from w centers in a silicon-on-insulator. Optic Express 28(11): 16057-16072.

Charnvanichborikarn, S., Villis, B.J., Johnson, B.C., Wong-Leung, J., McCallum, J.C., Williams, J.S. & Jagadish, C. 2010. Effect of boron on interstitial-related luminescence centers in silicon. Applied Physics Letters 96(5): 051906.

Davies, G. 1989. The optical properties of luminescence centres in silicon. Physics Reports 176(3-4): 83-188.

Dee, C.F., Ahmad, I., Yan, L., Zhou, X. & Majlis, B.Y. 2011. Amorphization of ZnO nanowires by proton beam irradiation. Nano 6(03): 259-263.

Gibbons, J.F. 1972. Ion implantation in semiconductor - part II: Damage production and annealing. In Proceeding of the IEEE 60(9): 1062-1096.

Husnain, G., Ahmad, I., Yao, S.D., Rafique, H.M., Umar, A.A. & Dee, C.F. 2012. Depth-dependent tetragonal distortion study of AlGaN epilayer thin film using RBS and channeling technique. Modern Physics Letter B 26(14): 1250086.

Jahanshah, F., Sopian, K., Abdullah, H., Ahmad, I., Othman, M.Y. & Zaidi, S.H. 2007. Investigation on ion implantation models impact on IV curve and thin film solar cell efficiency. In Proceedings of the 7th WSEAS International Conference on Wavelet Analysis & Multirate Systems. WSEAS. pp. 133-137.

Nguyen, H.T., Phang, S.P., Wong-Leung, J. & Macdonald, M. 2016. Photoluminescence excitation spectroscopy of diffused layers on crystalline silicon wafers. IEEE Journal of Photovoltaics 6(3): 746-753.

Rotem, E., Shainline, J.M. & Xu, J.M. 2007. Electoluminescence of nanopatterned silicon with carbon implantation and solid phase epitaxial growth. Optic Express 15(21): 14099-14106.

Rotem, E., Shainline, J.M. & Xu, J.M. 2007. Enhanced photoluminescence from nanopatterned carbon-rich silicon grown by solid-phase epitaxy. Applied Physics Letters 91(5): 051127.

Schmidt, M.E., Zhang, X., Oshima, Y., Anh, L.T., Yasaka, A., Kanzaki, T., Muruganathan, M., Akabori, M., Shimoda, T. & Mizuta, H. 2017. Interaction study of nitrogen ion beam with silicon. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measuring, and Phenomena 35(3): 03D101.

Stoller, R.E., Toloczko, M.B., Was, G.S., Certain, A.G., Dwaraknath, S. & Garner, F.A. 2013. On the use of SRIM for computing radiation damage exposure. Nuclear Instruments and Methods in Physics Research B: Beam Interactions with Materials and Atoms 310: 75-80.

Thabethe, T.T. 2014. Ion implantation in RBS Investigation of the diffusion of implanted Xenon in 6H-SiC. University of Pretoria. MS Thesis (Unpublished).

Webb, R. 2001. Surrey University Sputter Profile Resolution from Energy Deposition, SUSPRE. IBC, University of Surrey, United Kingdom.

 

*Corresponding author; email: dduryha@ukm.edu.my

   

 

 

previous