Sains Malaysiana 49(12)(2020): 2989-2996
http://dx.doi.org/10.17576/jsm-2020-4912-10
A Brief
Review on Smart Grid Residential Network Schemes
(Ulasan Ringkas Skema Rangkaian Kediaman Grid Pintar)
NOSHIN
FATIMA1*, TAHSEEN AMIN QASURIA2 & MOHD. ADIB IBRAHIM1
1Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
2Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi-23640, KPK, Pakistan
Received:
11 August 2020/Accepted: 19
August 2020
ABSTRACT
Presently
the domestic zone is a fundamental part of the overall energy consumption
curve. Traditional energy control grids are facing dreadful complications while
handling domestic users due to the rapid growth in energy demand. However,
traditional grids are mainly dependent on coal, petrol, and other expensive
resources, although these resources are limited and also causing air pollution.
Hence, to avoid them, alternative resources should be considered for energy
production. Literature showed that renewable resources like wind, water,
thermal, and solar are some of the replacements for green energy production.
Their foremost advantage is that they are natural and free which will aid in
the production of economic and environmental-friendly energy on a large scale.
However, the residential-side consumers should also utilize the electricity
responsibly via the reduction in peak hour loads, by shifting loads to off-peak
hours. This will be possible through using different optimal consumption
schemes for demand-side management. In this article, home energy management
system schemes are discussed to reduce electricity bills for domestic consumers
by modifying the peak to average ratio. The suggested schemes can be used in
the future, where automatic machines will be able to communicate and make
intelligent decisions with the grid. The comparative study presents a summary
concerning their methods, load and cost minimization, scheduling, pricing, and
coverage range. As a result, customers can select the scheme according to their
requirements or can combine two or more to achieve a different kind of benefits
to utilizing energy both qualitatively and quantitatively.
Keywords:
Demand-side management; energy efficiency; renewable resources; smart
appliances; smart grid
ABSTRAK
Pada masa ini zon domestik memainkan peranan penting dalam keluk penggunaan tenaga secara keseluruhan. Grid kawalan tenaga tradisi menghadapi komplikasi mengerikan semasa menangani pengguna domestik kerana pertumbuhan permintaan tenaga yang pesat. Walau bagaimanapun,
grid tradisi tersebut bergantung kepada arang batu, petrol dan sumber lain yang mahal. Namun, sumber-sumber ini terhad dan juga menyebabkan pencemaran udara. Oleh itu, untuk mengatasi masalah tersebut, sumber alternatif harus dipertimbangkan untuk pengeluaran tenaga. Kajian kepustakaan menunjukkan bahawa sumber tenaga yang boleh diperbaharui seperti angin, air, haba dan solar adalah antara kaedah alternatif untuk penghasilan tenaga. Kelebihan utama sumber tersebut adalah daripada sumber semula jadi dan percuma yang akan membantu penjanaan tenaga yang mesra ekonomi dan mesra alam secara besar-besaran. Namun begitu, dari segi penempatan, pengguna juga harus menggunakan elektrik dengan penuh tanggung jawab melalui pengurangan beban pada waktu puncak, dengan mengalihkan beban ke luar lingkungan waktu puncak yang dapat dilakukan dengan mengamalkan skema penggunaan tenaga optimum yang berbeza. Dalam kertas ini, skema sistem pengurusan tenaga rumah dibincangkan untuk mengurangkan bil elektrik bagi pengguna domestik dengan mengubah nisbah puncak ke purata. Skema yang disarankan dapat digunakan pada masa hadapan dengan mesin akan berkomunikasi secara automatik dan membuat keputusan yang bijak pada grid. Kajian perbandingan menunjukkan ringkasan mengenai kaedah, pengurangan beban dan kos, penjadualan, penetapan harga serta liputan jaringan mereka. Oleh itu, pelanggan boleh memilih skema mengikut keperluan masing-masing atau dapat menggabungkan dua atau lebih skema untuk mencapai pelbagai jenis faedah menggunakan tenaga dengan baik secara kualitatif dan kuantitatif.
Kata kunci: Grid pintar; kecekapan tenaga; pengurusan daripada sisi permintaan; peranti pintar; sumber yang boleh diperbaharui
REFERENCES
Abdolrasol, M.G., Hannan, M.A., Mohamed, A., Amiruldin, U.A.U., Abidin, I.B.Z.
& Uddin, M.N. 2018. An optimal scheduling controller for virtual power
plant and microgrid integration using the binary backtracking search
algorithm. IEEE Transactions on Industry Applications 54(3):
2834-2844.
Ahmed, M.S., Mohamed, A., Khatib, T., Shareef, H., Homod, R.Z. & Abd Ali, J.
2017. Real time optimal schedule controller for home energy management system
using new binary backtracking search algorithm. Energy and Buildings 138(2017): 215-227.
Akestoridis, D.G., Harishankar, M., Weber, M.
& Tague, P. 2020. Zigator: Analyzing the security
of zigbee-enabled smart homes. In Proceedings of
the 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks ACM.
pp. 77-88.
Alsharif, M.H., Nordin, R. & Ismail, M.
2016. Green wireless network optimisation strategies
within smart grid environments for Long Term Evolution (LTE) cellular networks
in Malaysia. Renewable Energy 85: 157-170.
Bao, Z., Qiu, W., Wu, L., Zhai, F., Xu, W., Li, B. & Li, Z. 2018. Optimal
multi-timescale demand side scheduling considering dynamic scenarios of
electricity demand. IEEE Transactions on Smart Grid 10(3):
2428-2439.
Barbato, A. & Capone, A. 2014. Optimization models and methods
for demand-side management of residential users: A survey. Energies 7(9): 5787-5824.
Caron, S. & Kesidis, G. 2010.
Incentive-based energy consumption scheduling algorithms for the smart grid. In 2010 First IEEE International Conference on Smart Grid Communications.
pp. 391-396.
Costanzo, G.T., Zhu, G., Anjos, M.F. & Savard, G. 2012. A
system architecture for autonomous demand side load management in smart
buildings. IEEE Transactions on Smart Grid 3(4): 2157-2165.
Costanzo, G.T., Kheir, J. &
Zhu, G. 2011. Peak-load shaving in smart homes via online scheduling. 2011
IEEE International Symposium on Industrial Electronics. pp. 1347-1352.
Fatima, N., Karimov, K.S., Qasuria, T.A. & Ibrahim, M.A. 2020. A novel and stable
way for energy harvesting from Bi2Te3Se alloy based semitransparent
photo-thermoelectric module. Journal of Alloys and Compounds 849:
156702.
Filho, G.P.R., Villas, L.A., Gonçalves,
V.P., Pessin, G., Loureiro, A.A. & Ueyama, J. 2019. Energy-efficient smart home systems:
Infrastructure and decision-making process. Internet of Things 5:
153-167.
Ghadimi, N., Akbarimajd, A., Shayeghi, H. & Abedinia, O. 2018.
A new prediction model based on multi-block forecast engine in smart
grid. Journal of Ambient Intelligence and Humanized Computing 9(6):
1873-1888.
Guha, D., Roy, P. & Banerjee, S. 2020. Quasi-oppositional
backtracking search algorithm to solve load frequency control problem of
interconnected power system. Iranian Journal of Science and Technology
Transactions of Electrical Engineering 44(2): 781-804.
Hajjawi, A. & Ismail, M. 2015. A scheduling algorithm based
self-learning technique for smart grid communications over 4G networks. Journal
of Communications 10(11): 876-881.
Hannan, M.A., Tan, S.Y., Al-Shetwi,
A.Q., Jern, K.P. & Begum, R.A. 2020. Optimized
controller for renewable energy sources integration into microgrid: Functions,
constraints and suggestions. Journal of Cleaner Production 256(2020): 120419.
Ibrahim, A.M., Attia, M.A. & Abdelaziz, A.Y. 2020. A DSM
approach for distribution systems with high wind power penetration. Electric
Power Components and Systems 2012: 1-14.
Jawad, H.M., Jawad, A.M., Nordin,
R., Gharghan, S.K., Abdullah, N.F., Ismail, M. &
Abu-AlShaeer, M.J. 2019. Accurate empirical path-loss
model based on particle swarm optimization for wireless sensor networks in
smart agriculture. IEEE Sensors Journal 20(1): 552-561.
Karimov, K.S., Fatima, N., Qasuria, T.A.,
Siddiqui, K.J., Bashir, M.M., Alharbi, H.F., Alharth, N.H., Al-Harthi, Y.S.,
Amin, N. & Akhtaruzzaman, M. 2020. Innovative
semitransparent photo-thermoelectric cells based on bismuth antimony telluride
alloy. Journal of Alloys and Compounds 816(2020): 152593.
Lee, J., Kim, H.J., Park, G.L. & Kang, M. 2012. Energy
consumption scheduler for demand response systems in the smart grid. Journal
of Information Science & Engineering28(5):
955-969.
Lee, Z.Y. 2020. Game Theory based Autonomous DSM Algorithm
Design. EEE Student Reports (FYP/IA/PA/PI) Nanyang
Technological University (Unpublished).
Mahmood, A., Khan, I., Razzaq, S., Najam, Z., Khan, N.A.,
Rehman, M.A. & Javaid, N. 2014. Home appliances
coordination scheme for energy management (HACS4EM) using wireless sensor
networks in smart grids. Procedia Computer Science 32(2014):
469-476.
Mbungu, N.T., Bansal, R.C. & Naidoo, R.M. 2019. Smart energy
coordination of autonomous residential home. IET Smart Grid 2(3):
336-346.
Mohsenian-Rad, A.H., Wong, V.W., Jatskevich,
J. & Schober, R. 2010. Optimal and autonomous incentive-based energy
consumption scheduling algorithm for smart grid. Innovative Smart Grid
Technologies (ISGT) 2010: 1-6.
Pallonetto, F., De Rosa, M., Milano, F. & Finn, D.P. 2019. Demand
response algorithms for smart-grid ready residential buildings using machine
learning models. Applied Energy 239: 1265-1282.
Ramos, J.S., Moreno, M.P., Rodríguez, L.R., Delgado, M.G.
& Domínguez, S.Á. 2019. Potential for exploiting the synergies between
buildings through DSM approaches. Case study: La Graciosa Island. Energy
Conversion and Management 194: 199-216.
Rayati, M., Bozorg, M., Ranjbar, A.M. & Cherkaoui, R.
2020. Balancing management of strategic aggregators using non-cooperative game
theory. Electric Power Systems Research 184(2020): 106297.
Ridzuan, N.H.A.M., Marwan, N.F., Khalid, N., Ali, M.H. & Tseng,
M.L. 2020. Effects of agriculture, renewable energy, and economic growth on
carbon dioxide emissions: Evidence of the environmental Kuznets curve. Resources,
Conservation and Recycling 160(2020): 104879.
Ruiz, N., Cobelo, I. & Oyarzabal, J. 2009. A direct load control model for virtual power plant management. IEEE Transactions on Power Systems 24(2): 959-966.
Samadi, P., Mohsenian-Rad, H., Schober, R. & Wong, V.W. 2012. Advanced demand side management for the future smart grid using mechanism design. IEEE Transactions on Smart Grid 3(3): 1170-1180.
Shi, Y., Tuan, H.D., Savkin, A.V., Duong, T.Q. & Poor, H.V. 2018. Model predictive control for smart grids with multiple electric-vehicle charging stations. IEEE Transactions on Smart Grid 10(2): 2127-2136.
Wang, P. & Tu, G. 2020. Localization algorithm of wireless sensor network based on matrix reconstruction. Computer Communications 154: 216-222.
Wilkes, J., Moccia, J. & Drangan, M. 2012. Wind in power: 2011 European Wind Statistics, European Wind Energy Association Technical Report EWEA. pp. 1-11.
Wu, Q., Wang, P. & Goel, L. 2010. Direct load control (DLC) considering nodal interrupted energy assessment rate (NIEAR) in restructured power systems. IEEE Transactions on Power Systems 25(3): 1449-1456.
Xia, K., Ni, J., Ye, Y., Xu, P. & Wang, Y. 2020. A real-time monitoring system based on ZigBee and 4G communications for photovoltaic generation. CSEE Journal of Power and Energy Systems 6(1): 52-63.
Zhao, X., Guerrero, J.M., Savaghebi,
M., Vasquez, J.C., Wu, X. & Sun, K. 2016. Low-voltage ride-through
operation of power converters in grid-interactive microgrids by using negative-sequence
droop control. IEEE Transactions on Power Electronics 32(4):
3128-3142.
*Corresponding
author; email: noshinfatima1990@gmail.com
|