Sains Malaysiana 49(12)(2020): 2989-2996

http://dx.doi.org/10.17576/jsm-2020-4912-10

 

A Brief Review on Smart Grid Residential Network Schemes

(Ulasan Ringkas Skema Rangkaian Kediaman Grid Pintar)

 

NOSHIN FATIMA1*, TAHSEEN AMIN QASURIA2 & MOHD. ADIB IBRAHIM1

 

1Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi-23640, KPK, Pakistan

 

Received: 11 August 2020/Accepted: 19 August 2020

 

ABSTRACT

Presently the domestic zone is a fundamental part of the overall energy consumption curve. Traditional energy control grids are facing dreadful complications while handling domestic users due to the rapid growth in energy demand. However, traditional grids are mainly dependent on coal, petrol, and other expensive resources, although these resources are limited and also causing air pollution. Hence, to avoid them, alternative resources should be considered for energy production. Literature showed that renewable resources like wind, water, thermal, and solar are some of the replacements for green energy production. Their foremost advantage is that they are natural and free which will aid in the production of economic and environmental-friendly energy on a large scale. However, the residential-side consumers should also utilize the electricity responsibly via the reduction in peak hour loads, by shifting loads to off-peak hours. This will be possible through using different optimal consumption schemes for demand-side management. In this article, home energy management system schemes are discussed to reduce electricity bills for domestic consumers by modifying the peak to average ratio. The suggested schemes can be used in the future, where automatic machines will be able to communicate and make intelligent decisions with the grid. The comparative study presents a summary concerning their methods, load and cost minimization, scheduling, pricing, and coverage range. As a result, customers can select the scheme according to their requirements or can combine two or more to achieve a different kind of benefits to utilizing energy both qualitatively and quantitatively.

 

Keywords: Demand-side management; energy efficiency; renewable resources; smart appliances; smart grid

 

ABSTRAK

Pada masa ini zon domestik memainkan peranan penting dalam keluk penggunaan tenaga secara keseluruhan. Grid kawalan tenaga tradisi menghadapi komplikasi mengerikan semasa menangani pengguna domestik kerana pertumbuhan permintaan tenaga yang pesat. Walau bagaimanapun, grid tradisi tersebut bergantung kepada arang batu, petrol dan sumber lain yang mahal. Namun, sumber-sumber ini terhad dan juga menyebabkan pencemaran udara. Oleh itu, untuk mengatasi masalah tersebut, sumber alternatif harus dipertimbangkan untuk pengeluaran tenaga. Kajian kepustakaan menunjukkan bahawa sumber tenaga yang boleh diperbaharui seperti angin, air, haba dan solar adalah antara kaedah alternatif untuk penghasilan tenaga. Kelebihan utama sumber tersebut adalah daripada sumber semula jadi dan percuma yang akan membantu penjanaan tenaga yang mesra ekonomi dan mesra alam secara besar-besaran. Namun begitu, dari segi penempatan, pengguna juga harus menggunakan elektrik dengan penuh tanggung jawab melalui pengurangan beban pada waktu puncak, dengan mengalihkan beban ke luar lingkungan waktu puncak yang dapat dilakukan dengan mengamalkan skema penggunaan tenaga optimum yang berbeza. Dalam kertas ini, skema sistem pengurusan tenaga rumah dibincangkan untuk mengurangkan bil elektrik bagi pengguna domestik dengan mengubah nisbah puncak ke purata. Skema yang disarankan dapat digunakan pada masa hadapan dengan mesin akan berkomunikasi secara automatik dan membuat keputusan yang bijak pada grid. Kajian perbandingan menunjukkan ringkasan mengenai kaedah, pengurangan beban dan kos, penjadualan, penetapan harga serta liputan jaringan mereka. Oleh itu, pelanggan boleh memilih skema mengikut keperluan masing-masing atau dapat menggabungkan dua atau lebih skema untuk mencapai pelbagai jenis faedah menggunakan tenaga dengan baik secara kualitatif dan kuantitatif.

 

Kata kunci: Grid pintar; kecekapan tenaga; pengurusan daripada sisi permintaan; peranti pintar; sumber yang boleh diperbaharui

 

REFERENCES

Abdolrasol, M.G., Hannan, M.A., Mohamed, A., Amiruldin, U.A.U., Abidin, I.B.Z. & Uddin, M.N. 2018. An optimal scheduling controller for virtual power plant and microgrid integration using the binary backtracking search algorithm. IEEE Transactions on Industry Applications 54(3): 2834-2844.

Ahmed, M.S., Mohamed, A., Khatib, T., Shareef, H., Homod, R.Z. & Abd Ali, J. 2017. Real time optimal schedule controller for home energy management system using new binary backtracking search algorithm. Energy and Buildings 138(2017): 215-227.

Akestoridis, D.G., Harishankar, M., Weber, M. & Tague, P. 2020. Zigator: Analyzing the security of zigbee-enabled smart homes. In Proceedings of the 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks ACM. pp. 77-88.

Alsharif, M.H., Nordin, R. & Ismail, M. 2016. Green wireless network optimisation strategies within smart grid environments for Long Term Evolution (LTE) cellular networks in Malaysia. Renewable Energy 85: 157-170.

Bao, Z., Qiu, W., Wu, L., Zhai, F., Xu, W., Li, B. & Li, Z. 2018. Optimal multi-timescale demand side scheduling considering dynamic scenarios of electricity demand. IEEE Transactions on Smart Grid 10(3): 2428-2439.

Barbato, A. & Capone, A. 2014. Optimization models and methods for demand-side management of residential users: A survey. Energies 7(9): 5787-5824.

Caron, S. & Kesidis, G. 2010. Incentive-based energy consumption scheduling algorithms for the smart grid. In 2010 First IEEE International Conference on Smart Grid Communications. pp. 391-396.

Costanzo, G.T., Zhu, G., Anjos, M.F. & Savard, G. 2012. A system architecture for autonomous demand side load management in smart buildings. IEEE Transactions on Smart Grid 3(4): 2157-2165.

Costanzo, G.T., Kheir, J. & Zhu, G. 2011. Peak-load shaving in smart homes via online scheduling. 2011 IEEE International Symposium on Industrial Electronics. pp. 1347-1352.

Fatima, N., Karimov, K.S., Qasuria, T.A. & Ibrahim, M.A. 2020. A novel and stable way for energy harvesting from Bi2Te3Se alloy based semitransparent photo-thermoelectric module. Journal of Alloys and Compounds 849: 156702.

Filho, G.P.R., Villas, L.A., Gonçalves, V.P., Pessin, G., Loureiro, A.A. & Ueyama, J. 2019. Energy-efficient smart home systems: Infrastructure and decision-making process. Internet of Things 5: 153-167.

Ghadimi, N., Akbarimajd, A., Shayeghi, H. & Abedinia, O. 2018. A new prediction model based on multi-block forecast engine in smart grid. Journal of Ambient Intelligence and Humanized Computing 9(6): 1873-1888.

Guha, D., Roy, P. & Banerjee, S. 2020. Quasi-oppositional backtracking search algorithm to solve load frequency control problem of interconnected power system. Iranian Journal of Science and Technology Transactions of Electrical Engineering 44(2): 781-804.

Hajjawi, A. & Ismail, M. 2015. A scheduling algorithm based self-learning technique for smart grid communications over 4G networks. Journal of Communications 10(11): 876-881.

Hannan, M.A., Tan, S.Y., Al-Shetwi, A.Q., Jern, K.P. & Begum, R.A. 2020. Optimized controller for renewable energy sources integration into microgrid: Functions, constraints and suggestions. Journal of Cleaner Production 256(2020): 120419.

Ibrahim, A.M., Attia, M.A. & Abdelaziz, A.Y. 2020. A DSM approach for distribution systems with high wind power penetration. Electric Power Components and Systems 2012: 1-14.

Jawad, H.M., Jawad, A.M., Nordin, R., Gharghan, S.K., Abdullah, N.F., Ismail, M. & Abu-AlShaeer, M.J. 2019. Accurate empirical path-loss model based on particle swarm optimization for wireless sensor networks in smart agriculture. IEEE Sensors Journal 20(1): 552-561.

Karimov, K.S., Fatima, N., Qasuria, T.A., Siddiqui, K.J., Bashir, M.M., Alharbi, H.F., Alharth, N.H., Al-Harthi, Y.S., Amin, N. & Akhtaruzzaman, M. 2020. Innovative semitransparent photo-thermoelectric cells based on bismuth antimony telluride alloy. Journal of Alloys and Compounds 816(2020): 152593.

Lee, J., Kim, H.J., Park, G.L. & Kang, M. 2012. Energy consumption scheduler for demand response systems in the smart grid. Journal of Information Science & Engineering28(5): 955-969.

Lee, Z.Y. 2020. Game Theory based Autonomous DSM Algorithm Design. EEE Student Reports (FYP/IA/PA/PI) Nanyang Technological University (Unpublished).

Mahmood, A., Khan, I., Razzaq, S., Najam, Z., Khan, N.A., Rehman, M.A. & Javaid, N. 2014. Home appliances coordination scheme for energy management (HACS4EM) using wireless sensor networks in smart grids. Procedia Computer Science 32(2014): 469-476.

Mbungu, N.T., Bansal, R.C. & Naidoo, R.M. 2019. Smart energy coordination of autonomous residential home. IET Smart Grid 2(3): 336-346.

Mohsenian-Rad, A.H., Wong, V.W., Jatskevich, J. & Schober, R. 2010. Optimal and autonomous incentive-based energy consumption scheduling algorithm for smart grid. Innovative Smart Grid Technologies (ISGT) 2010: 1-6.

Pallonetto, F., De Rosa, M., Milano, F. & Finn, D.P. 2019. Demand response algorithms for smart-grid ready residential buildings using machine learning models. Applied Energy 239: 1265-1282.

Ramos, J.S., Moreno, M.P., Rodríguez, L.R., Delgado, M.G. & Domínguez, S.Á. 2019. Potential for exploiting the synergies between buildings through DSM approaches. Case study: La Graciosa Island. Energy Conversion and Management 194: 199-216.

Rayati, M., Bozorg, M., Ranjbar, A.M. & Cherkaoui, R. 2020. Balancing management of strategic aggregators using non-cooperative game theory. Electric Power Systems Research 184(2020): 106297.

Ridzuan, N.H.A.M., Marwan, N.F., Khalid, N., Ali, M.H. & Tseng, M.L. 2020. Effects of agriculture, renewable energy, and economic growth on carbon dioxide emissions: Evidence of the environmental Kuznets curve. Resources, Conservation and Recycling 160(2020): 104879.

Ruiz, N., Cobelo, I. & Oyarzabal, J. 2009. A direct load control model for virtual power plant management. IEEE Transactions on Power Systems 24(2): 959-966.

Samadi, P., Mohsenian-Rad, H., Schober, R. & Wong, V.W. 2012. Advanced demand side management for the future smart grid using mechanism design. IEEE Transactions on Smart Grid 3(3): 1170-1180.

Shi, Y., Tuan, H.D., Savkin, A.V., Duong, T.Q. & Poor, H.V. 2018. Model predictive control for smart grids with multiple electric-vehicle charging stations. IEEE Transactions on Smart Grid 10(2): 2127-2136.

Wang, P. & Tu, G. 2020. Localization algorithm of wireless sensor network based on matrix reconstruction. Computer Communications 154: 216-222.

Wilkes, J., Moccia, J. & Drangan, M. 2012. Wind in power: 2011 European Wind Statistics, European Wind Energy Association Technical Report EWEA. pp. 1-11.

Wu, Q., Wang, P. & Goel, L. 2010. Direct load control (DLC) considering nodal interrupted energy assessment rate (NIEAR) in restructured power systems. IEEE Transactions on Power Systems 25(3): 1449-1456.

Xia, K., Ni, J., Ye, Y., Xu, P. & Wang, Y. 2020. A real-time monitoring system based on ZigBee and 4G communications for photovoltaic generation. CSEE Journal of Power and Energy Systems 6(1): 52-63.

Zhao, X., Guerrero, J.M., Savaghebi, M., Vasquez, J.C., Wu, X. & Sun, K. 2016. Low-voltage ride-through operation of power converters in grid-interactive microgrids by using negative-sequence droop control. IEEE Transactions on Power Electronics 32(4): 3128-3142.

 

*Corresponding author; email: noshinfatima1990@gmail.com

   

 

 

previous