Sains Malaysiana 49(12)(2020): 3007-3015

http://dx.doi.org/10.17576/jsm-2020-4912-12

 

Electrochemical Properties of Natural Sensitizer from Garcinia mangostana and Archidendron pauciflorum Pericarps for Dye-Sensitized Solar Cell (DSSC) Application

(Sifat Elektrokimia Pemekaan Semula Jadi daripada Perikarpa Garcinia mangostana dan Archidendron pauciflorum untuk Penggunaan Sel Suria Peka Pewarna (DSSC))

 

MASHASRIYAH ISMAIL1, NORASIKIN AHMAD LUDIN1*, NORUL HISHAM HAMID2, MAHMOUD A.M. AL-ALWANI3, NORANI MUTI MUHAMED4, SUHAILA SEPEAI1, MOHD ADIB IBRAHIM1 & MOHD ASRI MAT TERIDI1

 

1Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Biocomposite Unit, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

3Department of Biology, College of Education for Pure Sciences/Ibn Al-Haitham, University of Baghdad

Baghdad, Iraq

 

4Centre of Innovative Nanostructures & Nanodevices (COINN), Universiti Teknologi Petronas (UTP), 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia

 

5Unit of Fundamental Studies, Faculty of Engineering and Environment Built, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 12 August 2020/Accepted: 27 August 2020

 

ABSTRACT

Dye-sensitized solar cells (DSSC) create imitation photosynthesis by using chemical reactions to produce electricity from sunlight. DSSC has been pursued in numerous studies due to its capability to achieve efficiencies of up to 15% with artificial photosensitizer in diffuse light. However, artificial photosensitizers present a limitation because of the complex processing of metal compound. Therefore, various types of sensitizers were developed and synthesized to surpass the artificial sensitizer performances such as natural sensitizers from bio-based materials including plants, due to simple processing techniques and low environmental impact. Thus, this study examines the potential and properties of natural sensitizers from the waste of bio-based materials from Garcinia mangostana (mangosteen fruit) and Archidendron pauciflorum (jering fruit). Both fruits pericarps have dark color pigments as dark purple and dark brown, respectively, which promise a good absorption and has potential to be used as sensitizer for DSSC. Each pericarps dye extracted using cold extraction method in methanol solvent. Electrochemical properties and photovoltaic properties of the natural photosensitizers were studied. The highest peaks of photoluminescence spectra of mangosteen and jering sensitizers were at 490 and 670 nm, respectively, due to their different types of dye pigment extracted. We also obtained the absorption spectra for both mangosteen and jering sensitizers at 380-500 and 400-600 nm, respectively, in blue shift behavior. The redox reaction was also studied using cyclic voltammetry and identify their energy levels. The DSSC device with mangosteen sensitizer achieved an efficiency of 0.38% with 35.43% (IPCE at 337 nm) and 37.75 Ω (Rs), whereas that with jering sensitizer has efficiency of 0.07% with 25.31% (IPCE at 337 nm) and 490.70 Ω (Rs). Performance studies for both photosensitizers were weak due to their HOMO-LUMO levels, but the results show that both natural dyes can be potentially applied as photosensitizer in DSSC.

 

Keywords: Absorption; DSSC; efficiency; natural dye; photosensitizer

 

ABSTRAK

Sel suria peka pewarna (DSSC) membuat fotosintesis tiruan dengan menggunakan tindak balas kimia untuk menghasilkan elektrik daripada cahaya matahari. Peranti DSSC telah digunakan dalam banyak kajian kerana kemampuannya untuk mencapai kecekapan hingga 15% dengan pemeka warna buatan dalam cahaya yang resap. Walau bagaimanapun, pemeka warna buatan mempunyai batasan kerana mengandungi sebatian logam yang kompleks. Oleh itu, pelbagai jenis pemeka warna dikaji dan disintesis untuk mengatasi prestasi pemekaan buatan seperti pemeka semula jadi daripada bahan berasaskan bio termasuk tanaman, kerana teknik penghasilan pemeka yang mudah dan kesan persekitaran yang rendah. Oleh itu, kajian ini mengkaji potensi dan sifat pemekaan semula jadi daripada bahan buangan berasaskan bio daripada Garcinia mangostana (buah manggis) dan Archidendron pauciflorum (buah jering). Kedua-dua buah masing-masing mempunyai kulit perikarpa yang berwarna gelap iaitu ungu gelap dan coklat gelap yang boleh membantu mendapatkan penyerapan cahaya yang baik dan berkebolehan dijadikan pemeka untuk peranti DSSC. Pewarna diekstrak menggunakan kaedah pengekstrakan sejuk di dalam larutan metanol. Sifat elektrokimia dan fotovoltaik pemeka warna semula jadi ini dianalisis dalam kajian ini. Puncak tertinggi spektrum fotoluminesen pemeka manggis dan jering adalah masing-masing pada 490 dan 670 nm, kerana pelbagai jenis pigmen pewarna yang diekstrak. Kami juga dapat memperoleh spektrum penyerapan untuk kedua-dua pemeka manggis dan jering pada masing-masing 380-500 dan 400-600 nm, dalam tingkah laku anjakan biru. Tindak balas redoks juga dikaji menggunakan voltametri berkitar dan mengenal pasti tahap tenaga pemeka tersebut. Peranti DSSC dengan pemeka warna manggis mencapai kecekapan peranti 0.38% dengan 35.43% (IPCE pada 337 nm) dan 37.75 Ω (Rs), sedangkan pemeka warna jering mempunyai kecekapan peranti 0.07% dengan 25.31% (IPCE at 337 nm) dan 490.70 Ω (Rs). Kajian prestasi peranti untuk kedua-dua pemeka warna tersebut lemah kerana paras HOMO-LUMO pewarna, tetapi hasil kajian menunjukkan bahawa kedua-dua pewarna semula jadi berpotensi digunakan sebagai pemeka cahaya dalam DSSC.

 

Kata kunci: DSSC; kecekapan; pemeka warna buatan; penyerapan; pewarna semula jadi

 

REFERENCES

Al-Alwani, M.A., Mohamad, A.B., Kadhum, A.A.H., Ludin, N.A., Safie, N.E., Razali, M.Z., Ismail, M. & Sopian, K. 2017. Natural dye extracted from Pandannus amaryllifolius leaves as sensitizer in fabrication of dye-sensitized solar cells. International Journal of Electrochemical Science 12(1): 747-761.

Alias, N.N. & Yaacob, K.A. 2016. Natural dye sensitizer in dye sensitized solar cell. Sains Malaysiana 45(8): 1227-1234.

Attanayake, C.I.F., de Silva, C., Premachandra, B.A.J.K., De Alwis, A.A.P. & Senadheera, G.K.R. 2013. Dye-sensitized solar cells: using over 100 natural dyes as sensitizers. 2013 AIChE Annual Meeting. pp. 1-16.

Bunawan, H., Dusik, L., Bunawan, S.N. & Amin, N.M. 2013. Botany, traditional uses, phytochemistry and pharmacology of Archidendron jiringa: A review. Global Journal of Pharmacology 7(4): 474-478.

Godibo, D.J., Anshebo, S.T. & Anshebo, T.Y. 2015. Dye sensitized solar cells using natural pigments from five plants and quasi-solid state electrolyte. Journal of the Brazilian Chemical Society 26(1): 92-101.

Jinchu, I., Sreekala, C.O., Sreelatha, K.S. & Mohan, R.E. 2016. Photovoltaic parameters of DSSCs using natural dyes with TiO2 nanopowder and nanofiber as photoanodes: A comparative study. 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) 4154-4157.

Jung, H.A., Su, B.N., Keller, W.J., Mehta, R.G. & Kinghorn, A.D. 2006. Antioxidant xanthones from the pericarp of Garcinia mangostana (Mangosteen). Journal of Agricultural and Food Chemistry 54(6): 2077-2082.

Kumar, N.S., Ibrahim, A.A., Dhar, A. & Vekariya, R.L. 2019. Optoelectrical characterization of different fabricated donor substituted benzothiazole based sensitizers for efficient DSSCs. Journal of Photochemistry and Photobiology A: Chemistry 372: 35-41.

Kushwaha, R., Srivastava, P. & Bahadur, L. 2013. Natural pigments from plants used as sensitizers for TiO2 based dye-sensitized solar cells. Journal of Energy 2013: Article ID. 654953.

Leonat, L., Sbarcea, G. & Branzoi, I.V. 2013. Cyclic voltammetry for energy levels estimation of organic materials. UPB Scientific Bulletin, Series B: Chemistry and Materials Science 75(3): 111-118.

Maiaugree, W., Lowpa, S., Towannang, M., Rutphonsan, P., Tangtrakarn, A., Pimanpang, S., Maiaugree, P., Ratchapolthavisin, N., Sang-Aroon, W., Jarernboon, W. & Amornkitbamrung, V. 2015. A dye sensitized solar cell using natural counter electrode and natural dye derived from mangosteen peel waste. Scientific Reports 5(1): 15230.

Mariey, L., Signolle, J.P., Amiel, C. & Travert, J. 2001. Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics. Vibrational Spectroscopy 26(2): 151-159.

O'regan, B. & Grätzel, M. 1991. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346): 737-740.

Ooyama, Y., Hagiwara, Y., Mizumo, T., Harima, Y. & Ohshita, J. 2013. Photovoltaic performance of dye-sensitized solar cells based on D–π–A type BODIPY dye with two pyridyl groups. New Journal of Chemistry 37(8): 2479-2485.

Park, N.G., Kang, M.G., Ryu, K.S., Kim, K.M. & Chang, S.H. 2004. Photovoltaic characteristics of dye-sensitized surface-modified nanocrystalline SnO2 solar cells. Journal of Photochemistry and Photobiology A: Chemistry 161(2-3): 105-110.

Rajkumar, S. & Suguna, K. 2016. Analysis of natural sensitizers to enhance the efficiency in dye sensitized solar cell. International Journal of Engineering Research and Applications 6(5): 41-46.

Safie, N.E., Hamid, N.H., Sepeai, S., Teridi, M.A.M., Ibrahim, M.A., Sopian, K. & Arakawa, H. 2017a. Energy levels of natural sensitizers extracted from rengas (Gluta spp.) and mengkulang (Heritiera elata) wood for dye-sensitized solar cells. Materials for Renewable and Sustainable Energy 6(2): 5. G G, N.E., Ludin, N.A., Hamid, N.H., Tahir, P.M., Teridi, M.A.M., Sepeai, S., Ibrahim, M.A. & Sopian, K. 2017b. Electron transport studies of dye-sensitized solar cells based on natural sensitizer extracted from rengas (Gluta spp.) and mengkulang (Heritiera elata) wood. Bioresources 12(4): 9227-9243.

San Esteban, A.C.M. & Enriquez, E.P. 2013. Graphene-anthocyanin mixture as photosensitizer for dye-sensitized solar cell. Solar Energy 98: 392-399.

Sathyajothi, S., Jayavel, R. & Dhanemozhi, A.C. 2017. The fabrication of natural dye sensitized solar cell (DSSC) based on TiO2 using henna and beetroot dye extracts. Materials Today: Proceedings 4(2): 668-676.

Shahid, M. & Mohammad, F. 2013. Recent advancements in natural dye applications: A review. Journal of Cleaner Production 53: 310-331.

Tontapha, S., Sang-Aroon, W., Kanokmedhakul, S., Promgool, T. & Amornkitbamrung, V. 2017. Effects of dye-adsorption solvents, acidification and dye combination on efficiency of DSSCs sensitized by α-mangostin and anthocyanin from mangosteen pericarp. Journal of Materials Science: Materials in Electronics 28(10): 7454-7467.

Ye, M., Wen, X., Wang, M., Iocozzia, J., Zhang, N., Lin, C. & Lin, Z. 2015. Recent advances in dye-sensitized solar cells: From photoanodes, sensitizers and electrolytes to counter electrodes. Materials Today 18(3): 155-162.

Zhou, H., Wu, L., Gao, Y. & Ma, T. 2011. Dye-sensitized solar cells using 20 natural dyes as sensitizers. Journal of Photochemistry and Photobiology A: Chemistry 219(2-3): 188-194.

Zulkifili, A.N.B., Kento, T., Daiki, M. & Fujiki, A. 2015. The basic research on the dye-sensitized solar cells (DSSC). Journal of Clean Energy Technologies 3(5): 382-387.

 

*Corresponding author; email: sheekeen@ukm.edu.my

   

 

 

previous