Sains Malaysiana 49(12)(2020): 3055-3063
http://dx.doi.org/10.17576/jsm-2020-4912-17
Seed-Mediated
Synthesis and Photoelectric Properties of Selenium Doped Zinc Oxide Nanorods
(Sintesis
Bermediasi Benih dan Sifat Fotoelektrik Selenium Terdop Nanorod Zink Oksida)
ARI SULISTYO RINI1*,
YOLANDA RATI1, MIRANTI AGUSTIN1,YANUAR HAMZAH1 & AKRAJAS ALI UMAR2
1Department
of Physics, Faculty of Mathematics and Natural Science, Universitas Riau, Kampus Bina
Widya, Jl. H.R Soebrantas Km 12.5, Simpang Baru, Pekanbaru, 28293, Indonesia
2Institute
of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 18 August 2020/Accepted: 27
August 2020
ABSTRACT
Pristine ZnO and selenium doped ZnO (Se-ZnO) nanorods were
successfully synthesized using seed-mediated hydrothermal method. The growth
solution of both pure and Se-doped ZnO nanorods employed zinc nitrate hexahydrate (ZNH) and hexamethylenetetramine (HMT) as a precursor and surfactant,
respectively. As a dopant source, selenium salt solution was obtained by
reacting selenium powder with sodium borohydride at low temperature. The
as-prepared pure ZnO and Se-doped ZnO nanorods were characterized using field effect
scanning electron microscopy (FESEM), X-ray diffraction (XRD), UV-Visible
spectroscopy (UV-Vis), and Photoluminescence (PL) spectroscopy. FESEM images
show that the geometric shape of Se-ZnO nanoparticles
is nanorods with a hexagonal cross-section. The XRD
pattern shows the diffraction peak of the sample at the angles of 2θ:
34.44°, 36.25° and 47.54° which represents the hkl plane of (002), (101) and (102), respectively. The crystalline size calculated
from XRD data is found to be in the range of 35-42 nm. The UV-Vis spectrum
shows that Se-ZnO nanorods strong absorption peaks appeared in the range of 300-380 nm for all samples. Se
doping has slightly altered the band gap energy of pure ZnO nanorods around 0.01 eV. The peak of the
photoluminescence spectra of the sample at 470 nm indicates the blue emission
band.
Keywords: FESEM; PL spectra; selenium doping; UV-Vis; XRD; zinc oxide
ABSTRAK
ZnO asli dan selenium terdop nanorod ZnO (Se-ZnO) berjaya disintesis menggunakan
kaedah hidroterma biji benih. Larutan pertumbuhan bagi kedua-dua ZnO asli dan
Se-ZnO adalah menggunakan zink nitrat heksahidrat (ZNH) dan
hexametilenetetramina (HMT) masing-masing sebagai pelopor dan surfaktan.
Sebagai sumber pengedopan, larutan garam selenium diperoleh daripada tindak
balas serbuk selenium dengan natrium borohidrida pada suhu rendah. ZnO asli dan
Se-ZnO dicirikan menggunakan mikroskopi elektron imbasan pancaran medan
(FESEM), pembelauan sinar-X (XRD), spektroskopi UV (UV-Vis) dan spektroskopi
fotoluminesen (PL). Imej FESEM menunjukkan bentuk geometri nanozarah Se-ZnO
adalah nanorod dengan keratan rentas heksagon. Corak XRD pula menunjukkan
puncak belauan sampel pada sudut 2θ: 34.44°, 36.25° dan 47.54° yang mewakili
satah hkl masing-masing pada (002), (101) dan (102). Saiz kristal yang dihitung
daripada data XRD berada dalam julat 35-42 nm. Spektrum UV-Vis menunjukkan
bahawa puncak penyerapan nanorod Se-ZnO muncul pada julat 300-380 nm untuk
semua sampel. Pengedopan Se mengubah sedikit tenaga jurang jalur nanorod ZnO
tulen sekitar 0.01 eV. Puncak spektra fotoluminesen pula muncul pada 470 nm
menunjukkan jalur pancaran biru.
Kata kunci: FESEM;
pengedopan selenium; spektra PL; UV-Vis; XRD; zink oksida
REFERENCES
Abrar, I., Dee, C.F.,
Gebeshuber, I.C. & Majlis, B.Y. 2012. Growth and characterization of indium
doped ZnO nanowires using vapor transport deposition method. Advanced
Materials Research 364: 202-205.
Achouri, F., Corbel, S., Balan, L.,
Mozet, K., Girot, E., Medjahdi, G., Said, M.B., Ghrabi, A. & Schneider, R.
2016. Porous Mn-doped ZnO nanoparticles for enhanced solar and visible light
photocatalysis. Materials and Design 101: 309-316.
Alexandrov, A., Zvaigzne, M.,
Lypenko, D., Nabiev, I. & Samokhvalov, P. 2020. Al-, Ga-, Mg-, or Li-doped
zinc oxide nanoparticles as electron transport layers for quantum dot
light-emitting diodes. Scientific Reports 10(1): 1-11.
Alshammari, A.S., Chi, L., Chen, X.,
Bagabas, A., Kramer, D., Alromaeh, A. & Jiang, Z. 2015. Visible-light
photocatalysis on C-doped ZnO derived from polymer-assisted pyrolysis. RSC
Advances 5(35): 27690-27698.
Ashari, F., Chyi, J.L.Y., Talib,
Z.A., Yunus, W.W.W., Jian, L.Y. & Kee, L.H. 2016. Optical characterization
of zinc selenide compound prepared through hydrothermal method. Materials
Science Forum 846: 237-244.
Bae, S.Y., Seo, H.W. & Park, J.
2004. Vertically aligned sulfur-doped ZnO nanowires synthesized via chemical
vapor deposition. Journal of Physical Chemistry B 108(17): 5206-5210.
Bangbai, C., Chongsri, K., Pecharapa,
W. & Techitdeera, W. 2013. Effect of Al and N doping on structural and
optical properties of sol-gel derives ZnO thin films. Sains Malaysiana 42(2): 239-246.
Chen, L.C., Tu, Y.J., Wang, Y.S.,
Kan, R.S. & Huang, C.M. 2008. Characterization and photoreactivity of N-,
S-, and C-doped ZnO under UV and visible light illumination. Journal of
Photochemistry and Photobiology A: Chemistry 199(2-3): 170-178.
Chen, Y., Wang, L., Wang, W. &
Cao, M. 2017. Synthesis of Se-doped ZnO nanoplates with enhanced
photoelectrochemical and photocatalytic properties. Materials Chemistry and
Physics 199: 416-423.
Corral-Aguado, A., Martínez-Torres,
P., Gomez-Ortiz, N., Pichardo-Molina, J., De la Rosa-García, S., Borjas-García,
S.E. & Medina, A. 2016. Synthesis of Mg doped ZnO with hexagonal shape by
hydrothermal method. Microscopy and Microanalysis 22(S3): 1882-1883.
Duan, L., Lin, B., Zhang, W., Zhong,
S. & Fu, Z. 2006. Enhancement of ultraviolet emissions from ZnO films by Ag
doping. Applied Physics Letters 88(23): 1-4.
Janotti, A. & Van De Walle, C.G.
2009. Fundamentals of zinc oxide as a semiconductor. Reports on Progress in
Physics 72(12): 1-29.
Kannappan, P. & Dhanasekaran, R.
2014. Studies on structural and optical properties of ZnSe and ZnSSe single
crystals grown by CVT method. Journal of Crystal Growth 401: 691-696.
Karim, S.S.A., Dee, C.F., Majlis,
B.Y. & Mohamed, M.A. 2019. Recent progress on fabrication of zinc oxide
nanorod-based field effect transistor biosensors. Sains Malaysiana 48(6): 1301-1310.
Kim, S., Park, H., Nam, G., Yoon, H.,
Kim, B., Ji, I., Kim, Y., Kim, I., Park, Y., Kang, D. & Leem, J.Y. 2014.
Hydrothermally grown boron-doped ZnO nanorods for various applications:
Structural, optical, and electrical properties. Electronic Materials Letters 10: 81-87.
Kumar, S.O., Soundeswaran, S. &
Dhanasekaran, R. 2002. Thermodynamic calculations and growth of ZnSe single
crystals by chemical vapor transport technique. Crystal Growth and Design 2(6): 585-589.
Luo, J., Wang, Y. & Zhang, Q.
2018. Progress in perovskite solar cells based on ZnO nanostructures. Solar Energy 163: 289-306.
Mustafa, M.M., Ahmed, H.A.M., Taha,
K.K. & Mohammed, R. 2018. Synthesis and characterization of selenium doped
zinc oxide (ZnO-Se) nanoparticles. International Journal of Current Research 10(9): 73644-73648.
Nenavathu, B.P., Sharma, A. &
Dutta, R.K. 2018. Se doped ZnO nanoparticles with improved catalytic activity
in degradation of Cholesterol. Journal of
Water and Environmental Technology 3(4): 289-300.
Patterson, A.L. 1939. The Scherrer
formula for X-ray particle size determination. Physical Reviews 56(10):
978-982.
Rahman, M.Y.A., Roza, L., Umar, A.A.
& Salleh, M.M. 2016. Effect of dimethyl borate composition on the
performance of boron doped ZnO dye-sensitized solar cell (DSSC). Journal of
Materials Science: Materials in Electronics 27(3): 2228-2234.
Rong, P., Ren, S. & Yu, Q. 2019.
Fabrications and applications of ZnO nanomaterials in flexible functional
devices - A review. Critical Reviews in Analytical Chemistry 49(4):
336-349.
Singh, S.C. 2013. Zinc oxide
nanostructures: Synthesis, characterizations and device applications. Journal
of Nanoengineering and Nanomanufacturing 3(4): 283-310.
Sutanto, H., Wibowo, S., Nurhasanah,
I., Hidayanto, E. & Hadiyanto, H. 2016. Ag doped ZnO thin films synthesized
by spray coating technique for methylene blue photodegradation under UV
irradiation. International Journal of Chemical Engineering 2016: 1-6.
Taha, K.K., Mustafa, M.M., Ahmed,
H.A.M. & Talab, S. 2019. Selenium zinc oxide (Se/ZnO) nanoparticles:
Synthesis, characterization, and photocatalytic activity. Zeitschrift für
Naturforschung A 74(12): 1043-1056.
Tan, R., Zhang, Y.L., Yang, Y., Song,
W., Xu, T.F. & Nie, Q. 2009. Pyroelectric properties of ZnO-based
nanostructured polycrystalline ceramics. International Symposium on
Photoelectronic Detection and Imaging 2009: Material and Device Technology for
Sensors. doi.org/10.1117/12.836518.
Thangavel, R. & Chang, Y.C. 2012.
Investigations on structural, optical and electrical properties of p-type ZnO
nanorods using hydrothermal method. Thin Solid Films 520(7): 2589-2593.
Thu, T.V. & Maenosono, S. 2010.
Synthesis of high-quality Al-doped ZnO nanoink. Journal of Applied Physics 107(1): 1-6.
Walsh, A., Da Silva, J.L.F. &
Wei, S.H. 2008. Origins of band-gap renormalization in degenerately doped
semiconductors. Physical Review B 78(7): 075211.
Wang, M., Ren, F., Zhou, J., Cai, G.,
Cai, L., Hu, Y., Wang, D., Liu, Y., Guo, L. & Shen, S. 2015. N doping to
ZnO nanorods for photoelectrochemical water splitting under visible light:
Engineered impurity distribution and terraced band structure. Scientific
Reports 5: 1-13.
Wang, X., Huang, H., Liang, B., Liu,
Z., Chen, D. & Shen, G. 2013. ZnS nanostructures: synthesis, properties,
and applications. Critical Reviews in Solid State and Materials Sciences 38(1): 57-90.
Wang, Y., Zhong, M., Wang, W., Wang,
Q., Wu, W. & Luo, X. 2019. Effects of ZnSe modification on the perovskite
films and perovskite solar cells based on ZnO nanorod arrays. Applied
Surface Science 495: 1-30.
Yilmaz, S., McGlynn, E., Bacaksiz,
E., Cullen, J. & Chellappan, R.K. 2012. Structural, optical and magnetic
properties of Ni-doped ZnO micro-rods grown by the spray pyrolysis method. Chemical
Physics Letters 525-526: 72-76.
Zakaria, M.R., Johari, S.,
Ismail, M.H. & Hashim, U. 2017. Characterization of zinc oxide (ZnO)
piezoelectric properties for surface acoustic wave (SAW) device. International Conference on Applied
Photonics and Electronics 2017 (InCAPE2017). Avillion Port Dickson,
Malaysia. p. 01055.
Zhu, L. & Zeng, W. 2017.
Room-temperature gas sensing of ZnO-based gas sensor: A review. Sensors and
Actuators A: Physical 267: 242-261.
*Corresponding author; email: ari.sulistyo@lecturer.unri.ac.id
|