Sains Malaysiana 49(12)(2020): 3065-3072
http://dx.doi.org/10.17576/jsm-2020-4912-18
Rapid Prototyping of Micropillars using Digital Light
Process 3D Printing Technique
(Pemprototip Pantas Tiang Mikro menggunakan Teknik
Pencetakan Proses Cahaya Digital 3D)
NUR ALIYAH ALWANI MOHD NAZAM, JUMRIL YUNAS*, ABDUL
HAFIZ MAT SULAIMAN, MUHAMAD, RAMDZAN BUYONG & AZRUL AZLAN HAMZAH
Institute of Microengineering and Nanoelectronics
(IMEN), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 18 August 2020/Accepted: 27 August
2020
ABSTRACT
In this paper, we discuss a technique to fabricate a three-dimensional (3D)
printed micropillars structure of microfluidic system. The developed system
consists of microchannels, chambers, and micropillars. The creation of arrays
of pillars were the focus of the study. The structure is fabricated using a 3D
printing technique called Digital Light Process (DLP). In this paper, we
examine the potential use of the 3D printing approaches for the fabrication of
microfilter and micromixer devices integrated with microfluidic channels. Our
3D printing process shows that micropillars with diameters between 200 and 400
µm can be fabricated using a DLP 3D printer machine by optimizing the
preparation process and post processing parameters. Later, SEM analysis shows
that micropillars with high aspect ratio and straight side wall were achieved.
The DLP 3D printer is the most suitable and reliable technique that can produce
the smallest dimension compared to other types of 3D printer that shows a
promising method for the rapid prototyping of microfluidic devices for
biomedical application.
Keywords: 3D
printer; digital light process; microfluidic; microfilter and mixer;
micropillars; rapid prototyping
ABSTRAK
Dalam makalah ini kami membincangkan teknik memfabrikasi struktur tiga
dimensi (3D) sistem mikrofluida. Sistem
yang dibangunkan terdiri daripada saluran mikro, ruang dan tiang mikro.
Penciptaan tiang susunan adalah fokus kajian. Struktur tersebut dibuat
menggunakan teknik percetakan 3D yang disebut sebagai Proses Cahaya Digital
(DLP). Dalam makalah ini, kami meneliti potensi penggunaan pendekatan pencetakan
3D untuk pembuatan peranti turas mikro dan pencampur mikro yang disatukan
dengan saluran mikrofluida. Proses pencetakan 3D kami menunjukkan bahawa tiang
mikro dengan diameter antara 200 dan 400 µm dapat dibuat menggunakan mesin
pencetak 3D DLP dengan mengoptimumkan proses penyediaan dan parameter pasca
pemprosesan. Kemudian, analisis SEM menunjukkan bahawa tiang mikro dengan
nisbah aspek tinggi dan dinding sisi lurus dapat dicapai. Pencetak 3D DLP
adalah teknik yang paling sesuai dan dipercayai boleh menghasilkan dimensi
terkecil berbanding jenis pencetak 3D yang lain dan menunjukkan kaedah ini yang
menjanjikan untuk pemprototaip pantas peranti mikrofluida untuk aplikasi
bioperubatan.
Kata
kunci: Mikrofluida; penapis mikro dan pengadun; pencetak 3D; proses cahaya
digital; tiang mikro
REFERENCES
Alemnis, A.G.
2020. What are Micropillars and How are
They Produced? https://www.azom.com/article.aspx?ArticleID=18867.
Ali,
W.A.F.W., Hamzah, A.A., Mustafa, K.A., Majlis, B.Y. & Yunas, J. 2018.
Numerical study of zigzag micro mixer with 3D channel dimension. 2018 IEEE International Conference on
Semiconductor Electronics (ICSE). pp. 117-120.
Ali,
W.A.F.W., Yunas, J., Hamzah, A.A. & Majlis, B.Y. 2017. Numerical study of
laminar flow in pillared-micro channel. 2017 IEEE Regional Symposium
on Micro and Nanoelectronics (RSM). pp. 71-74.
Bazaz,
S.R., Rouhi, O., Raoufi, M.A., Ejeian, F., Asadnia, M., Jin, D. & Warkiani,
M.E. 2020. 3D printing of inertial microfluidic devices. Scientific Reports 10(1): 1-14.
Bertana,
V., De Pasquale, G., Ferrero, S., Scaltrito, L., Catania, F., Nicosia, C.,
Marasso, S.L., Cocuzza, M. & Perrucci, F. 2019. 3D printing with the
commercial UV-curable standard blend resin: Optimized process parameters
towards the fabrication of tiny functional parts. Polymers 11(2): 292.
Buyong,
M.R., Yunas, J., Hamzah, A.A., Majlis, B.Y., Larki, F. & Abd Aziz, N. 2015.
Design, fabrication and characterization of dielectrophoretic microelectrode
array for particle capture. Microelectronics
International 32(2): 96-102.
Hamzah,
A.A., Abidin, H.E.Z., Majlis, B.Y., Nor, M.M., Ismardi, A., Sugandi, G., Tiong,
T.Y., Dee, C.F. & Yunas, J. 2013. Electrochemically deposited and etched
membranes with precisely sized micropores for biological fluids
microfiltration. J. Micromech. Microeng. 23: 074007.
Hu, Y.,
Yuan, H., Liu, S., Ni, J., Lao, Z., Xin, C., Pan, D., Zhang, Y., Zhu, W., Li,
J. & Wu, D. 2020. Chiral assemblies of laser-printed micropillars directed
by asymmetrical capillary force. Advanced
Materials 32(31): 2002356.
Mustafa,
K.A., Majlis, B.Y., Yunas, J. & Hamzah, A.A. 2019. Fabrication of
micromachined uniform microtrench arrays for silicon based filtration membrane. Sains Malaysiana 48(6): 1171-1178.
Mustafa,
K.A., Yunas, J., Hamzah, A.A. & Majlis, B.Y. 2017. Application of BOE and
KOH+IPA for fabrication of smooth nanopore membrane surface for artificial
kidney. 2017 IEEE Regional Symposium on Micro and Nanoelectronics (RSM).
pp. 18-21.
Pawinanto,
R.E., Yunas, J. & Hashim, A.M. 2019. Design optimization of active
microfluidic mixer incorporating micropillar on flexible membrane. Microsystem
Technologies 25(4): 1203-1209.
Shaaban,
A.M.F., Hafez, A.I., Abdel-Fatah, M.A., Abdel-Monem, N.M. & Mahmoud, M.H.
2016. Process engineering optimization of nanofiltration unit for the treatment
of textile plant effluent in view of solution diffusion model. Egyptian
Journal of Petroleum 25(1): 79-90.
Sochol,
R.D., Sweet, E., Glick, C.C., Wu, S.Y., Yang, C., Restaino, M. & Lin, L.
2018. 3D printed microfluidics and microelectronics. Microelectronic
Engineering 189: 52-68.
Vasilescu,
S.A., Bazaz, S.R., Jin, D., Shimoni, O. & Warkiani, M.E. 2020. 3D printing
enables the rapid prototyping of modular microfluidic devices for particle
conjugation. Applied Materials Today 20: 100726.
Waheed,
S., Cabot, J.M., Macdonald, N.P., Lewis, T., Guijt, R.M., Paull, B. &
Breadmore, M.C. 2016. 3D printed microfluidic devices: Enablers and barriers. Lab
on a Chip 16(11): 1993-2013.
Yaakub, T.N.T., Yunas, J., Latif, R., Hamzah, A.A., Wee, M.F.M.R. &
Majlis, B.Y. 2018. Surface modification of electroosmotic silicon microchannel
using thermal dry oxidation. Micromachines 9(5): 222.
Yilmaz, B. & Yilmaz, F. 2018. Lab-on-a-chip technology and its
applications. In Omics Technologies and
Bio-Engineering, edited by Barh, D. & Azevedo, V. London: Academic Press. pp. 145-153.
Yunas, J., Mulyanti, B., Hamidah, I., Said, M.M., Pawinanto, R.E., Ali,
W.A.F.W., Subandi, A., Hamzah, A.A., Latif, R. & Majlis, B.Y. 2020.
Polymer-based MEMS electromagnetic actuator for biomedical application: A
review. Polymers 12(5): 1184.
*Corresponding
author; email: jumrilyunas@ukm.edu.my
|