Sains Malaysiana 49(12)(2020): 3073-3080

http://dx.doi.org/10.17576/jsm-2020-4912-19

 

Effect of Temperature on Strain-Induced Hardness of Lead-Free Solder Wire using Nanoindentation Approach

(Kesan Suhu terhadap Kekerasan Terikan Teraruh Wayar Pateri Bebas Plumbum menggunakan Pendekatan Pelekukan Nano)

 

NORLIZA ISMAIL1,2, MARIA ABU BAKAR2* & SAIFUL BAHARI BAKARUDIN2

 

1Department of Applied Physic, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 18 August 2020/Accepted: 28 August 2020

 

ABSTRACT

Hardness properties of SAC305 solder wire under tensile test at varied temperature was investigated. Continuous multi-cycle (CMC) nanoindentation technique with ten cycle of indentation for each sample was performed to evaluate the hardness behaviour of SAC305 solder wire at different depth of indentation. As a result, all investigated SAC305 solder wire under constant strain rate of tensile test and at different temperature revealed the occurrence of indentation size effect (ISE). At initial cycle of indentation, SAC305 solder wire at room temperature (25 °C) have higher hardness value compared to the others sample which exposed to the varied temperature during tensile test. Besides, higher temperature causes the higher strain or elongation to the SAC305 solder wire. Applied of strain during the tensile test had generated the pre-dislocation activity in the SAC305 solder wire. Therefore, higher hardness values of SAC305 at room temperature is due to the existence of high dislocation density induced by the applied strain. Nevertheless, the existence of heat at 60, 90, 120 and 180 °C during the tensile test prompt the rearrangement of dislocation and reduce the dislocation activities, thus, allowing higher elongation of solder wire.

 

Keywords: Continuous multi-cycle nanoindentation; hardness; lead-free solder; strain-induced; tensile test

 

ABSTRAK

Sifat kekerasan wayar pateri SAC305 di bawah ujian tegangan pada suhu yang berbeza telah dikaji. Teknik pelekukan nano multi-kitaran berterusan dengan sepuluh kitaran pelekukan bagi setiap sampel telah dijalankan untuk menilai kelakuan kekerasan wayar pateri SAC305 pada kedalaman pelekukan yang berbeza. Keputusannya, kesemua wayar pateri SAC305 yang dikaji di bawah kadar terikan yang malar dan pada suhu yang berbeza menunjukkan berlaku kesan saiz pelekukan (ISE). Pada kitaran awal pelekukan, wayar pateri SAC305 pada suhu bilik (25 °C) mempunyai nilai kekerasan yang lebih tinggi dibandingkan dengan sampel lain yang didedahkan kepada suhu yang berbeza semasa ujian ketegangan. Suhu yang lebih tinggi menyebabkan terikan atau pemanjangan yang lebih tinggi terhadap wayar pateri SAC305. Terikan yang dikenakan semasa ujian tegangan telah menghasilkan aktiviti pra-kehelan pada wayar pateri SAC305. Oleh itu, nilai kekerasan yang lebih tinggipada wayar pateri SAC305 pada suhu bilik adalah disebabkan oleh kehadiran ketumpatan kehelan yang tinggi teraruh oleh terikan yang dikenakan. Walau bagaimanapun, kehadiran haba pada suhu 60, 90, 120 dan 180 °C ketika ujian tegangan menyebabkan penyusunan semula kehelan dan mengurangkan aktiviti kehelan serta membenarkan pemanjangan wayar pateri yang lebih tinggi.

 

Kata kunci: Kekerasan; pateri bebas-plumbum; pelekukan nano multi-kitaran berterusan; terikan-teraruh; ujian tegangan

 

REFERENCES

 

Abdullah, I., Zulkifli, M.N., Jalar, A., Ismail, R. & Ambak, M.A. 2019. Relationship of mechanical and micromechanical properties with microstructural evolution of Sn-3.0Ag-0.5Cu (SAC305) solder wire under varied tensile strain rates and temperatures. Journal of Electronic Materials 48(2019): 2826-2839.

Abdullah, I., Zulkifli, M.N., Jalar, A. & Ismail, R. 2018. Deformation behavior relationship between tensile and nanoindentation tests of SAC305 lead-free solder wire. Soldering and Surface Mount Technology 30(3): 194-202.

Armstrong, R.W. & Elban, W.L. 2012. Hardness properties across multiscales of applied loads and material structures. Materials Science and Technology 28(9-10): 1060-1071.

Bhattacharya, S., Kundu, R., Bhattacharya, K., Poddar, A. & Roy, D. 2019. Micromechanical hardness study and the effect of reverse indentation size on heat-treated silver doped zinc-molybdate glass nanocomposites. Journal of Alloys and Compounds 770: 136-142.

Di Gianfrancesco, A. 2017. The fossil fuel power plants technology. Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants, edited by Di Gianfrancesco, A. London: Woodhead Publishing. pp. 1-49.

Faraji, G., Kim, H.S. & Kashi, H.T. 2018. Mechanical properties of ultrafine-grained and nanostructured metals. In Severe Plastic Deformation, edited by Faraji, G., Kim, H.S. & Kashi, H.T. London: Elsevier. pp. 223-257.

He, L.H. & Swain, M.V. 2017. 3.9 Microindentation. Comprehensive Biomaterials II, edited by Paul Ducheyne, Amsterdam: Elsevier. pp. 144-168.

Htun, M.S., Kyaw, S.T. & Lwin, K.T. 2008. Effect of heat treatment on microstructures and mechanical properties of spring steel. Journal of Metals, Materials and Minerals 18(2): 191-197.

Ismail, N., Jalar, A., Abu Bakar, M., Safee, N.S., Wan Yusoff, W.Y. & Ismail, A. 2020. Microstructural evolution and micromechanical properties of SAC305/CNT/CU solder joint under blast wave condition. Soldering & Surface Mount Technology Vol. ahead-of-print. No. https://doi.org/10.1108/SSMT-11-2019-0035.

Ismail, N., Jalar, A., Bakar, M.A., Ismail, R., Safee, N.S., Ismail, A.G. & Ibrahim, N.S. 2019. Effect of isothermal aging on microhardness properties of Sn-Ag-Cu/CNT/Cu using nanoindentation. Sains Malaysiana 48(6): 1267-1272.

Ivanov, I.V., Emurlaev, K.I., Lazurenko, D.V., Stark, A. & Bataev, I.A. 2020. Rearrangements of dislocations during continuous heating of deformed β-TiNb alloy observed by in-situ synchrotron X-ray diffraction. Materials Characterization 166: 1-9.

Jalar, A., Bakar, M.A. & Ismail, R. 2020. Temperature dependence of elastic-plastic properties of fine-pitch SAC 0307 solder joint using nanoindentation approach. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 51(3): 1221-1228.

Kim, Y.C., Gwak, E.J., Ahn, S.M., Jang, J.I., Han, H.N. & Kim, J.Y. 2017. Indentation size effect in nanoporous gold. Acta Materialia 138(2017): 52-60.

Li, Q., Xu, Y.B., Lai, Z.H., Shen, L.T. & Bai, Y.L. 2000. Dynamic recrystallization induced by plastic deformation at high strain rate in a Monel alloy. Materials Science and Engineering A 276(1-2): 250-256.

Li, X. & Bhushan, B. 2002. A review of nanoindentation continuous stiffness measurement technique and its applications. Materials Characterization 48(1): 11-36.

Luo, F., Peng, H., Chen, H., Xiao, X., Xie, W., Wang, H. & Yang, B. 2019. Dislocation substructure-controlled softening of Cu-20Ni-20Mn alloy. Materials Characterization 147: 253-261.

Maharaj, D. & Bhushan, B. 2014. Scale effects of nanomechanical properties and deformation behavior of Au nanoparticle and thin film using depth sensing nanoindentation. Beilstein Journal of Nanotechnology 2014(5): 822-836.

Oliver, W.C. & Pharr, G.M. 1992. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research 7(6): 1564-1583.

Onuki, Y., Sato, S., Nakagawa, M., Yamanaka, K., Mori, M., Hoshikawa, A., Ishigaki, T. & Chiba, A. 2018. Strain-induced martensitic transformation and texture evolution in cold-rolled Co–Cr alloys. Quantum Beam Science 2(2): 1-11.

Padilla, E., Jakkali, V., Jiang, L. & Chawla, N. 2012. Quantifying the effect of porosity on the evolution of deformation and damage in Sn-based solder joints by X-ray microtomography and microstructure-based finite element modeling. Acta Materialia 60(9): 4017-4026.

Panigrahi, S., Rengaswamy, J. & Pancholi, V. 2009. Effect of plastic deformation conditions on microstructural characteristics and mechanical properties of Al 6063 alloy. Materials and Design 30(6): 1894-1901.

Sangwal, K. 2000. On the reverse indentation size effect and microhardness measurement of solids. Materials Chemistry and Physics 63(2): 145-152.

Saraswati, T., Sritharan, T., Mhaisalkar, S., Breach, C.D. & Wulff, F. 2006. Cyclic loading as an extended nanoindentation technique. Materials Science and Engineering A 423(1-2): 14-18.

Song, J.M., Shen, Y.L., Su, C.W., Lai, Y.S. & Chiu, Y.T. 2009. Strain rate dependence on nanoindentation responses of interfacial intermetallic compounds in electronic solder joints with Cu and Ag substrates. Materials Transactions 50(5): 1231-1234.

Walley, S.M. 2012. Historical origins of indentation hardness testing. Materials Science and Technology 28(9-10): 1028-1044.

Wan Yusoff, W.Y., Ismail, N., Safee, N.S., Ismail, A., Jalar, A. & Abu Bakar, M. 2019. Correlation of microstructural evolution and hardness properties of 99.0Sn-0.3Ag-0.7Cu (SAC0307) lead-free solder under blast wave condition. Soldering and Surface Mount Technology 31(2): 102-108.

Wang, L., Asempah, I., Li, X., Zang, S.Q., Zhou, Y.F., Ding, J. & Jin, L. 2019. Indentation size effect in aqueous electrophoretic deposition zirconia dental ceramic. Journal of Materials Research34(4): 555-562.

Wong, E.H., Selvanayagam, C.S., Seah, S.K.W., van Driel, W.D., Caers, J.F.J.M., Zhao, X.J., Owens, N., Tan, L.C., Frear, D.R., Leoni, M., Lai, Y.S. & Yeh, C.L. 2008. Stress-strain characteristics of tin-based solder alloys at medium strain rate. Materials Letters 62(17-18): 3031-3034.

Yahaya, M.Z. & Mohamad, A.A. 2017. Hardness testing of lead-free solders: A review. Soldering and Surface Mount Technology 29(4): 203-224.

 

*Corresponding author; email: maria@ukm.edu.my

   

 

 

previous