Sains Malaysiana 49(12)(2020): 3105-3115

http://dx.doi.org/10.17576/jsm-2020-4912-23

 

Analysis of Mg(OH)2 Deposition for Magnesium Air Fuel Cell (MAFC) by Saline Water

(Analisis Pemendapan Mg(OH)2 untukSel Bahan Api Udara Magnesium (MAFC) oleh Air Masin)

 

SAHRIAH BASRI1*, NURUL SHAHZIRA HAZRI1, SHANJEVA RAO SELLADURAI2, A.M. ZAINOODIN1, S.K. KAMARUDIN1,2, S.U. ZAKARIA1 & A.R. HASHIM3

 

1Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Persatuan Nelayan Kawasan Sepang, Bagan Lalang, Sungai Pelek, 43950 Sepang, Selangor Darul Ehsan, Malaysia

 

Received: 5 August 2020/Accepted: 11 September 2020

 

ABSTRACT

Magnesium air fuel cell (MAFC) systems are eco-friendly fuel cells that use electrolytes of saltwater and oxygen from the air to produce power. However, MAFC cells face a critical problem, which is the deposition of side products on the surface of the Mg anode plate and the cathode electrode. Therefore, this study will focus on the analysis of factor on Mg(OH)2 deposition by identifying the optimal seawater, Mg alloy, and surface roughness and additives solution. Magnesium plates AZ31 are used as the anode, and air electrode as the cathode. This study also considers physical characteristics such as SEM, EDX and corrosion test while chemical characterization by performance test with difference electrolyte, anode, and roughness. Catechol-3,5-disulfonic acid disodium salt (tiron) as anti-deposition used to reduce the deposition of Mg(OH)2 on the anode and cathode surfaces and thus improve the performance of MAFC. From the performance study, the MAFC able to produce a power density of 27.54 mW/cm2 which is high compare to the MAFC without tiron. Therefore, with the active area by 110.25 cm2, the MAFC generates 2.93 W. The deposition of Mg(OH)2 reduces the active area of magnesium oxidation, thus, reduce the electricity generation. With the knowledge of optimal seawater concentration and improvement of a single fuel cell system, this study is expecting to assist the fisheries and aquaculture sector as well as the coastal communities in terms of providing a better, safer, and cheaper alternative source of electricity.

 

Keywords: Anti-deposition; magnesium fuel cell; saline water

 

ABSTRAK

Sistem sel bahan api udara magnesium (MAFC) adalah sel bahan api mesra alam yang menggunakan elektrolit air garam dan oksigen daripada udara untuk menghasilkan tenaga. Walau bagaimanapun, sel MAFC menghadapi masalah kritikal, iaitu pemendapan produk sampingan pada permukaan plat anod Mg dan elektrod katod. Oleh itu, kajian ini akan memfokuskan kepada analisis faktor pemendapan Mg(OH)2 dengan mengenal pasti air laut, aloi Mg yang optimum dan kekasaran permukaan serta larutan aditif. Plat magnesium AZ31 digunakan sebagai anod dan elektrod udara sebagai katod. Kajian ini juga mempertimbangkan ciri fizikal seperti SEM, EDX dan ujian kakisan sementara pencirian kimia oleh ujian prestasi dengan perbezaan elektrolit, anod dan kekasaran. Garam disodium asam katekol-3,5-disulfonik (tiron) sebagai anti-pemendapan digunakan untuk mengurangkan pemendapan Mg(OH)2 pada permukaan anod dan katod dan dengan demikian meningkatkan prestasi MAFC. Daripada kajian prestasi, MAFC mampu menghasilkan ketumpatan kuasa 27.54 mW/cm2 yang tinggi berbanding dengan MAFC tanpa tiron. Oleh itu, dengan luas aktif 110.25 cm2, MAFC menghasilkan 2.93 W. Pemendapan Mg(OH)2 mengurangkan kawasan aktif pengoksidaan magnesium, sehingga mengurangkan penjanaan elektrik. Dengan pengetahuan mengenai kepekatan air laut yang optimum dan peningkatan sistem sel fuel tunggal, kajian ini diharapkan dapat membantu sektor perikanan dan akuakultur serta masyarakat pesisir daripada segi penyediaan sumber elektrik alternatif yang lebih baik, lebih selamat dan lebih murah.

 

Kata kunci: Air masin; anti pemendapan; sel bahan api udara magnesium

 

REFERENCES

Abdullah, M.F., Abdullah, S., Omar, M.Z., Sajuri, Z. & Risby, M.S. 2015. Analysis of variable strain amplitude response caused by impact loading of carbon nanotube reinforced magnesium alloy AZ31B. Procedia Engineering 101: 10-17.

Dhanapal, A., Boopathy, S.R. & Balasubramanian, V. 2012. Influence of pH value, chloride ion concentration and immersion time on corrosion rate of friction stir welded AZ61A magnesium alloy weldment. Journal of Alloys and Compounds 523: 49-60.

Fadzillah, D.M., Kamarudin, S.K., Zainoodin, M.A. & Masdar, M.S. 2019. Critical challenges in the system development of direct alcohol fuel cells as portable power supplies: An overview. International Journal of Hydrogen Energy 44(5): 3031-3054.

Fadzillah, D.M., Rosli, M.I., Talib, M.Z.M., Kamarudin, S.K. & Daud, W.R.W. 2017. Review on microstructure modelling of a gas diffusion layer for proton exchange membrane fuel cells. Renewable and Sustainable Energy Reviews 77: 1001-1009.

Hahn, R., Mainert, J., Glaw, F. & Lang, K.D. 2015. Sea water magnesium fuel cell power supply. Journal of Power Sources 288: 26-35.

Hamlen, R.P., Jerabek, E.C., Ruzzo, J.C. & Siwek, E.G. 1969. Anodes for refuelable magnesium-air batteries. Journal of The Electrochemical Society 116(11): 1588.

Hannan, M.A., Hoque, M.M., Mohamed, A. & Ayob, A. 2017. Review of energy storage systems for electric vehicle applications: Issues and challenges. Renewable and Sustainable Energy Reviews 69: 771-789.

Höche, D., Lamaka, S.V., Vaghefinazari, B., Braun, T., Petrauskas, R.P., Fichtner, M. & Zheludkevich, M.L. 2018. Performance boost for primary magnesium cells using iron complexing agents as electrolyte additives. Scientific Reports 8(1): 1-9.

Kim, J.H., An, B.M., Lim, D.H. & Park, J.Y. 2018. Electricity production and phosphorous recovery as struvite from synthetic wastewater using magnesium-air fuel cell electrocoagulation. Water Research 132: 200-210.

Li, Y., Ma, J., Wang, G., Ren, F., Zhu, Y. & Song, Y. 2018. Investigation of sodium phosphate and sodium dodecylbenzenesulfonate as electrolyte additives for AZ91 magnesium-air battery. Journal of the Electrochemical Society 165(9): A1713-A1717.

Liang, S., Teng, F., Bulgan, G., Zong, R. & Zhu, Y. 2008. Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation. Journal of Physical Chemistry C 112(14): 5307-5315.

Ma, J., Wang, G., Li, Y., Ren, F. & Volinsky, A.A. 2019a. Electrochemical performance of Mg-air batteries based on AZ series magnesium alloys. Ionics 25(5): 2201-2209.

Ma, J., Qin, C., Li, Y., Ren, F., Liu, Y. & Wang, G. 2019b. Properties of reduced graphene oxide for Mg-air battery. Journal of Power Sources 430: 244-251.

Majlan, E.H., Rohendi, D., Daud, W.R.W., Husaini, T. & Haque, M.A. 2018. Electrode for proton exchange membrane fuel cells: A review. Renewable and Sustainable Energy Reviews 89: 117-134.

Mokhtar, M., Talib, M.Z.M., Majlan, E.H., Tasirin, S.M., Ramli, W.M.F.W., Daud, W.R.W. & Sahari, J. 2015. Recent developments in materials for aluminum-air batteries: A review. Journal of Industrial and Engineering Chemistry 32(25): 1-20.

Muhammad, W.N.A.W., Sajuri, Z., Mutoh, Y. & Miyashita, Y. 2011. Microstructure and mechanical properties of magnesium composites prepared by spark plasma sintering technology. Journal of Alloys and Compounds 509(20): 6021-6029.

Shi, Y., Peng, C., Feng, Y., Wang, R. & Wang, N. 2017. Microstructure and electrochemical corrosion behavior of extruded Mg–Al–Pb–La alloy as anode for seawater-activated battery. Materials and Design 124: 24-33.

Vaghefinazari, B., Höche, D., Lamaka, S.V., Snihirova, D. & Zheludkevich, M.L. 2020. Tailoring the Mg-air primary battery performance using strong complexing agents as electrolyte additives. Journal of Power Sources 453: 227880.

Wang, C., Yu, Y., Niu, J., Liu, Y., Bridges, D., Liu, X., Pooran, J., Zhang, Y. & Hu, A. 2019. Recent progress of metal-air batteries-a mini review. Applied Sciences 9(14): 2787.

Wong, W.Y. & Daud, W.R.W. 2015. Density functional theory study of oxygen reduction mechanism at nitrogen-doped carbon nanotubes for fuel cell applications. Journal of Engineering Science and Technology 10(8): 68-77.

Wong, W.Y., Daud, W.R.W., Mohamad, A.B. & Loh, K.S. 2015. Effect of temperature on the oxygen reduction reaction kinetic at nitrogen-doped carbon nanotubes for fuel cell cathode. International Journal of Hydrogen Energy 40(35): 11444-11450.

Yang, L., Lin, C., Gao, H., Xu, W., Li, Y., Hou, B. & Huang, Y. 2018. Corrosion behaviour of AZ63 magnesium alloy in natural seawater and 3.5 wt.% NaCl aqueous solution. International Journal of Electrochemical Science 13: 8084-8093.

Yang, L., Jiang, Q., Zheng, M., Hou, B. & Li, Y. 2016. Corrosion behavior of Mg–8Li–3Zn–Al alloy in neutral 3.5% NaCl solution. Journal of Magnesium and Alloys 4(2016): 22-26.

Zhang, Z., Li, Z., Sun, C., Zhang, T. & Wang, S. 2017. Preparation and properties of an amorphous MnO2/CNTs-OH catalyst with high dispersion and durability for magnesium-air fuel cells. Catalysis Today 298(2017): 241-249.

Zhao, Y., Huang, G., Zhang, C., Peng, C. & Pan, F. 2018. Performance of Mg-air battery based on AZ31 Mg alloy sheets with different grain sizes. International Journal of Electrochemical Science 13: 8953-8959.

Zheng, T., Hu, Y., Zhang, Y., Yang, S. & Pan, F. 2018. Composition optimization and electrochemical properties of Mg-Al-Sn-Mn alloy anode for Mg-air batteries. Materials & Design 1375: 245-255.

 

*Corresponding author; email: sahriah@ukm.edu.my

   

 

 

previous