Sains Malaysiana 49(12)(2020): 3125-3143
http://dx.doi.org/10.17576/jsm-2020-4912-25
Modification and
Optimization of Rice Husk Ash Bio-Filler in Sulfonated Polyimide Membrane for
Direct Methanol Fuel Cell
(Pengubahsuaian dan Pengoptimuman Bio-Pengisi Abu Sekam Padi dalam Membran Poliimida Tersulfonan untuk Bahan Api Sel Metanol Langsung)
YOU PO
YING1, SITI KARTOM KAMARUDIN1,2, MOHD SHAHBUDIN MASDAR1,2 & AZRAN MOHD ZAINOODIN1*
1Fuel
Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Research
Centre for Sustainable Process Technology, Faculty of Engineering and Built
Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received:
6 August 2020/Accepted: 11 September 2020
ABSTRACT
Direct
methanol fuel cell (DMFC) is a very high potential renewable and sustainable
energy for portable devices as it has very high energy density and more
environmentally friendly. Adding filler into the membrane matrix had reported
in improved performance of the DMFC. However, addition of filler will lead to
the decrease of the ion exchange capacity of the membrane, which will in turn
reduce the fuel cell performance. Hence, this work studies the modification of
rice husk ash via sulfonation process and the effect
of the synthesis parameter of novel sulfonated polyimides/sulfonated rice husk
ash (SPI/sRHA) composite membrane towards fuel cell
performance where filler sRHA had been synthesized
via the mixing reaction between rice husk ash (RHA) with chloroform and chlorosulfonic acid. The composition of filler in membranes
was optimized with different synthesis parameters such as different types of
filler used, loading of filler in membrane and membrane annealing temperature.
Investigation of the effects for these three parameters on the physicochemical
properties of the composite membranes produced was carried out using response
surface methodology (RSM) approach to optimize the synthesis parameters of the
composite membrane. The fillers and composite membranes were characterized by
Fourier transform infrared spectroscopy, X-ray diffraction, Brunauer–Emmett–Teller
(BET) analysis and transmission electron microscopy. Different synthesis
parameters had shown different influences on the physicochemical properties of
the composite membranes and consequently, gave different passive fuel cell
performances of DMFCs too. The optimized membrane (S-12-sR) showed enhanced
physicochemical performance as well as the passive single cell performance as
compared to pure SPI and Nafion 117 membranes. The
water uptake, proton conductivity and IEC that had been achieved by the
optimized membrane were 90.97%, 0.1891 S cm−1 and 0.2608 mmol g−1 respectively. The maximum power
density of the passive DMFC was improved from 8.1 mW cm−2 to 16.4 mW cm−2 under ambient conditions.
Keywords:
Bio-filler; composite membrane; physicochemical; sulfonated polyimide;
sulfonated rice husk ash
ABSTRAK
Bahan api sel metanol langsung (DMFC) adalah tenaga yang boleh diperbaharui dan lestari yang berpotensi tinggi untuk peranti mudah alih kerana mempunyai ketumpatan tenaga yang sangat tinggi dan lebih mesra alam. Penambahan pengisi ke dalam matriks membran telah dilaporkan mampu meningkatan prestasi DMFC. Walau bagaimanapun, penambahan pengisi akan menyebabkan penurunan kapasiti pertukaran ion membran, yang seterusnya akan mengurangkan prestasi bahan api sel. Oleh itu, kajian ini mengkaji pengubahsuaian abu sekam padi melalui proses sulfonasi dan kesan parameter sintesis membran komposit polimida sulfonasi/abu sekam padi sulfonasi (SPI/sRHA) terhadap prestasi bahan api sel dengan pengisi sRHA telah disintesis melalui pencampuran tindak balas antara abu sekam padi (RHA) dengan kloroform dan asid klorosulfonik. Komposisi pengisi dalam membran dioptimumkan dengan parameter sintesis yang berbeza seperti pelbagai jenis pengisi yang digunakan, pemuatan pengisi dalam membran dan suhu penyepuhlindapan membran. Kajian kesan ketiga-tiga parameter tersebut pada sifat fizikokimia membran komposit yang dihasilkan dilakukan menggunakan pendekatan kaedah respon permukaan (RSM) untuk mengoptimumkan parameter sintesis membran komposit. Pengisi dan membran komposit dicirikan dengan spektroskopi inframerah jelmaan Fourier, analisis pembelauan sinar-X, analisis Brunauer-Emmett-Teller
(BET) dan mikroskop transmisi elektron. Parameter sintesis yang berbeza telah menunjukkan pengaruh yang berbeza pada sifat fizikokimia membran komposit dan akibatnya, juga memberikan prestasi bahan api sel DMFC pasif yang berbeza. Membran yang dioptimumkan (S-12-sR) menunjukkan peningkatan prestasi fizikokimia serta prestasi sel tunggal pasif berbanding dengan membran SPI dan Nafion 117 tulen. Kadar penyerapan air, kekonduksian proton dan IEC yang berjaya dicapai dengan pengoptimuman membran adalah 90.97%, 0.1891 S cm−1 dan 0.2608 mmol g−1. Ketumpatan kuasa maksimum DMFC pasif ditingkatkan dari 8.1 mW cm−2 menjadi 16.4 mW cm−2 dalam keadaan ambien.
Kata kunci: Abu sekam beras tersulfonan; bio-pengisi; fisikokimia; membran komposit; poliimida tersulfonan
REFERENCES
Abdullah,
N. & Kamarudin, S.K. 2015. Titanium dioxide in
fuel cell technology: An overview. Journal
of Power Sources 278: 109-118.
Awang, N., Jaafar,
J. & Ismail, A.F. 2018. Thermal stability and water content study of
void-free electrospun SPEEK/cloisite membrane for direct methanol fuel cell application. Polymers 10(2): 194-209.
Azat, S., Korobeinyk,
A.V., Moustakas, K. & Inglezakis,
V.J. 2019. Sustainable production of pure silica from rice husk waste in
Kazakhstan. Journal of Cleaner Production 217: 352-359.
Barbosa,
S.L., Ottone, M., De Almeida, M.T., Lage, G.L.C., Almeida, M.A.R., Nelson, D.L., Dos Santos,
W.T.P., Clososki, G.C., Lopes, N.P., Klein, S.I.
& Zanatta, L.D. 2018. Ketalization of ketones to 1,3-dioxolanes and concurring self-aldolization catalyzed by an amorphous, hydrophilic SiO2-SO3H catalyst
under microwave irradiation. Journal of
the Brazilian Chemical Society 29(8): 1663-1671.
Chen,
W., Yuan, W., Ye, G., Han, F. & Tang, Y. 2017. Utilization and positive
effects of produced CO2 on the performance of a passive direct
methanol fuel cell with a composite anode structure. International Journal of Hydrogen Energy 42(23): 15613-15622.
Cui,
Y., Liu, Y., Wu, J., Zhang, F., Baker, A.P., Lavorgna,
M., Wu, Q., Tang, Q., Lu, J., Xiao, Z. & Liu, X. 2018. Porous silicon-aluminium oxide particles functionalized with acid
moieties: An innovative filler for enhanced Nafion-based
membranes of direct methanol fuel cell. Journal
of Power Sources 403: 118-126.
Devrim, Y. 2014. Fabrication and
performance evaluation of hybrid membrane based on a sulfonated polyphenyl sulfone/phosphotungstic acid/silica for proton exchange membrane fuel cell at low humidity conditions. Electrochimica Acta146:
741-751.
Ekrami-Kakhki, M.S., Naeimi, A. & Donyagard, F.
2019. Pt nanoparticles supported on a novel electrospun polyvinyl alcohol-CuOCo3O4/chitosan based on Sesbania sesban plant as an electrocatalyst for direct methanol fuel cells. International Journal of Hydrogen Energy 44(3): 1671-1685.
Fadzillah, D.M., Kamarudin, S.K., Zainoodin, M.A.
& Masdar, M.S. 2019. Critical challenges in the
system development of direct alcohol fuel cells as portable power supplies: An
overview. International Journal of
Hydrogen Energy 44(5): 3031-3054.
Johánek, V., Ostroverkh, A. & Fiala, R.
2019. Vapor-feed low temperature direct methanol fuel cell with Pt and PtRu electrodes: Chemistry insight. Renewable Energy 138: 409-415.
Kumar,
V., Kumar, P., Nandy, A. & Kundu,
P.P. 2016. A nanocomposite membrane composed of incorporated nano-alumina within sulfonated PVDF-co-HFP/Nafion blend as separating barrier in a single chambered
microbial fuel cell. RSC Advances 6(28): 23571-23580.
Kuo, Y.J. & Lin, H.L. 2018.
Effects of mesoporous fillers on properties of polybenzimidazole composite membranes for high-temperature polymer fuel cells. International Journal of Hydrogen Energy 43(9): 4448-4457.
Lee,
C.H., Park, C.H., Lee, S.Y., Jung, B.O. & Lee, M.L. 2008. Passive DMFC
system using a proton conductive hydrocarbon membrane. Desalination 233(1): 210-217.
Li,
J., Xu, G., Luo, X., Xiong, J., Liu, Z. & Cai, W. 2018. Effect of nano-size
of functionalized silica on overall performance of swelling-filling modified Nafion membrane for direct methanol fuel cell application. Applied Energy 213: 408-414.
Liu,
D., Peng, J., Li, Z., Liu, B. & Wang, L. 2018. Improvement in the
mechanical properties, proton conductivity, and methanol resistance of highly
branched sulfonated poly(arylene ether)/graphene oxide grafted with flexible alkylsulfonated side chains nanocomposite membranes. Journal
of Power Sources 378: 451-459.
Ong,
B.C., Kamarudin, S.K. & Basri,
S. 2017a. Direct liquid fuel cells: A review. International Journal of Hydrogen Energy 42(15): 10142-10157.
Ong,
B.C., Kamarudin, S.K., Masdar,
M.S. & Hasran, U.A. 2017b. Applications of
graphene nano-sheets as anode diffusion layers in
passive direct methanol fuel cells (DMFC). International
Journal of Hydrogen Energy 42(14): 9252-9261.
Pandey,
R.P. & Shahi, V.K. 2015. Phosphonic acid grafted poly(ethyleneimine)-silica composite
polymer electrolyte membranes by epoxide ring opening: Improved conductivity
and water retention at high temperature. International
Journal of Hydrogen Energy 40(41): 14235-14245.
Parthiban, V., Panda, S.K.
& Sahu, A.K. 2018. Highly fluorescent carbon
quantum dots-Nafion as proton selective hybrid
membrane for direct methanol fuel cells. Electrochimica Acta 292:
855-864.
Saccà, A., Carbone, A., Gatto, I., Pedicini, R. & Passalacqua, E. 2018. Synthesized yttria stabilised zirconia as filler in proton exchange
membranes (PEMs) with enhanced stability. Polymer
Testing 65: 322-330.
Salim,
Z.A.S.A., Hassan, A. & Ismail, H. 2018. The effect of high purity rice husk
silica synthesised using solvent-thermal extraction
method on the properties of natural rubber compounds. BioResources 13(3): 6936-6951.
Shaari, N. & Kamarudin,
S.K. 2018. Performance of crosslinked sodium
alginate/sulfonated graphene oxide as polymer electrolyte membrane in DMFC
application: RSM optimization approach. International
Journal of Hydrogen Energy 43(51): 22986-23003.
Shahabadi, R., Abdollahi, M. & Sharif, A. 2015. Preparation,
characterization and properties of polymer electrolyte nanocomposite membranes
containing silica nanoparticles modified via surface-initiated atom transfer
radical polymerization. International
Journal of Hydrogen Energy 40(9): 3749-3761.
Thiam, H.S., Daud,
W.R.W., Kamarudin, S.K., Mohamad, A.B., Kadhum, A.A.H., Loh, K.S. & Majlan, E.H. 2013. Performance of direct methanol fuel cell
with a palladium-silica nanofibre/Nafion composite membrane. Energy Conversion and
Management 75: 718-726.
Vijayakumar, V. & Khastgir, D. 2018a. Fabrication and comprehensive
investigation of physicochemical and electrochemical properties of
chitosan-silica supported silicotungstic acid
nanocomposite membranes for fuel cell applications. Energy 142: 313-330.
Vijayakumar, V. & Khastgir, D. 2018b. Hybrid composite membranes of
chitosan/sulfonated polyaniline/silica as polymer electrolyte membrane for fuel
cells. Carbohydrate Polymers 179:
152-163.
Wang,
H., Li, X., Feng, X., Liu, Y., Kang, W., Xu, X., Zhuang, X. & Cheng, B.
2018. Novel proton-conductive nanochannel membranes
with modified SiO2 nanospheres for direct
methanol fuel cells. Journal of Solid
State Electrochemistry 22(11): 3475-3484.
Yang,
H.N., Lee, W.H., Choi, B.S. & Kim, W.J. 2016. Preparation of Nafion/Pt-containing TiO2/graphene oxide
composite membranes for self-humidifying proton exchange membrane fuel cell. Journal of Membrane Science 504: 20-28.
Ying,
Y.P., Kamarudin, S.K. & Masdar,
M.S. 2018. Silica-related membranes in fuel cell applications: An overview. International Journal of Hydrogen Energy 43(33): 16068-16084.
You,
P.Y., Kamarudin, S.K. & Masdar,
M.S. 2019. Improved performance of sulfonated polyimide composite membranes
with rice husk ash as a bio-filler for application in direct methanol fuel
cells. International Journal of Hydrogen
Energy 44(3): 1857-1866.
Zainoodin, A.M., Kamarudin, S.K., Masdar, M.S., Daud, W.R.W., Mohamad, A.B. & Sahari,
J. 2014. Investigation of MEA degradation in a passive direct methanol fuel
cell under different modes of operation. Applied
Energy 135: 364-372.
*Corresponding author; email:
azrans@ukm.edu.my
|