Sains Malaysiana 49(12)(2020): 3155-3167
http://dx.doi.org/10.17576/jsm-2020-4912-27
Effects of Binary
(Lithium/Natrium)2 Carbonates on the Phase
and Microstructural Stability of Lscf-Sdc for Low
Temperature Solid Oxide Fuel Cells
(Kesan Karbonat (Litium/Natrium)2 Bineri pada Fasa dan Kestabilan Mikrostruktur Lscf-Sdc untukBahan Api Sel Oksida Pepejal Bersuhu Rendah)
HAMIMAH ABD. RAHMAN1*,
LINDA AGUN2, NG
KEI HOA1, SUFIZAR AHMAD1 &
NUR AZMAH NORDIN3
1Faculty of
Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor Darul Takzim, Malaysia
2School of
Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru,
Johor Darul Takzim, Malaysia
3Engineering
Materials and Structures (eMast) iKohza,
Malaysia-Japan International, Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100
Kuala Lumpur, Federal Territory, Malaysia
Received:
5 August 2020/Accepted: 11 September 2020
ABSTRACT
Most
studies focus on introducing of doped ceria carbonate into cathode materials to
enhance the cathode ionic conductivity for low temperature solid oxide fuel
cell. In this work, we aim
to identify the influence of Lithium/Natrium binaries (Li/Na)2 carbonates addition on Lanthanum Strontium Carbonate Ferrite-Samarium-Doped Ceria (LSCF-SDC) composite cathode on the phase
and microstructural stability under long-term durability of 1000 h. Three
different binaries (Li/Na)2 carbonate of 67:33, 62:38, and 53:47 mol.% were incorporated into LSCF-SDC via high energy ball milling
method. The phase and microstructural stability as a function of operating
temperature (400 and 600 °C)
were studied using X-ray diffraction (XRD) and field emission scanning electron
microscope (FESEM). Archimedes principle was applied to evaluate the porosity
of the cathode pellets. Electrochemical impedance
spectroscopy measurements were performed by using impedance setup at 600 °C under open-circuit condition. The XRD findings
demonstrated that cathodes able to retain their chemical phases after stability
test. Qualitative results show that the cathode morphology exhibits a slight increment on the particle size after the ageing
process at 1000 h. All cathodes prepared at various binary
carbonate ratio still maintain their porosity values between 26
and 32% after long-term stability test. This finding has
yielded a smaller area specific resistance of 0.66 Ω.cm2 at
600 °C. Therefore, incorporating binary (Li/Na)2 carbonate in LSCF-SDC shows a good combination when insignificant
changes observed after long-term stability test of 1000 h.
Keywords:
Binary carbonate; composite cathode; durability; impedances; LT-SOFC
ABSTRAK
Kebanyakan kajian fokus dalam memperkenalkan karbonat seria terdop ke dalam bahan katod untuk meningkatkan kekonduksian ionik bagi sel bateri oksida pepejal bersuhu rendah. Kajian ini bertujuan untuk mengenal pasti pengaruh penambahan karbonat Litium/Natirum (Li/Na)2 bineri pada katod komposit Lantanum Strontium Kobalt Ferit-Samarium terdop Seria (LSCF-SDC) terhadap kestabilan fasa dan mikrostrukturnya di bawah ujian ketahanan berjangka panjang selama 1000 jam. Tiga nisbah karbonat (Li/Na)2 bineri yang berbeza iaitu 67:33, 62:38, dan
53:47 %mol dicampurkan ke dalam LSCF-SDC menggunakan kaedah pengisaran bebola halaju tinggi. Kestabilan fasa dan mikrostruktur pada suhu operasi (400 dan 600 °C) dikaji menggunakan pembelauan sinar-X (XRD) dan mikroskop medan pancaran imbasan elektron (FESEM). Prinsip Archimedes diaplikasikan untuk mengukur keporosan pelet katod. Pengukuran spektroskopi impedans elektrokimia dilakukan dengan menggunakan persediaan impedans pada 600 °C di bawah keadaan litar terbuka. Hasil XRD membuktikan katod komposit mampu mengekalkan fasa kimianya selepas ujian kestabilan. Keputusan kualitatif morfologi katod menunjukkan sedikit peningkatan dalam saiz zarah selepas 1000 jam proses penuaan. Kesemua katod yang dihasilkan pada nisbah karbonat bineri yang berbeza masih mengekalkan nilai keliangan antara 26 hingga 32% selepas ujian kestabilan berjangka panjang. Hasil kajian memberikan nilai rintangan luas tentu yang rendah iaitu 0.66 Ω.cm2 pada 600 °C. Oleh itu, penambahan karbonat (Li/Na)2 bineri pada LSCF-SDCC menunjukkan kombinasi yang baik apabila tiada perubahan ketara diperhatikan selepas 100 jam ujian kestabilan berjangka panjang.
Kata kunci: Bineri karbonat; impedans; katod komposit; ketahanan; LT-SOFC
REFERENCES
Abdul Samat, A., Somalu, M.R., Muchtar, A., Hassan, O.H.
& Osman, N. 2016. LSC cathode prepared by polymeric complexation method for
proton-conducting SOFC application. Journal of Sol-Gel Science and
Technology 78(2): 382-393.
Agun, L., Rahman, H.A., Ahmad, S. & Muchtar, A. 2014.
Influence of binary carbonate on the properties of low temperature cathode
composite SOFC. Advanced Materials Research 1087: 177-181.
Ahmad, S., Bakar, M.S.A., Muchtar, A., Muhamad, N. &
Rahman, H.A. 2012. The effect of milling speed and calcination temperature
towards composite cathode LSCF-SDC carbonate. Advanced Materials Research 576: 220-223.
Anwar, M., Muhammed, A., Abdalla, A., Somalu, R. &
Muchtar, A. 2017. Effect of sintering temperature on the microstructure and
ionic conductivity of Ce0.8Sm0.1Ba0.1O2-δ electrolyte. Processing and Application of Ceramics 11(1): 67-74.
Asghar, M.I., Heikkilä, M. & Lund, P.D. 2017. Advanced
low-temperature ceramic nanocomposite fuel cells using ultra high ionic conductivity
electrolytes synthesized through freeze-dried method and solid-route. Materials
Today Energy 5: 338-346.
Baharuddin, N.A., Muchtar, A., Somalu, M.R. &
Seyednezhad, M. 2017. Influence of mixing time on the purity and physical
properties of SrFe0.5Ti0.5O3-δ powders
produced by solution combustion. Powder Technology 313: 382-388.
Baharuddin, N.A., Rahman, H.A., Muchtar, A., Sulong, A.B.
& Abdullah, H. 2013. Development of lanthanum strontium cobalt ferrite
composite cathodes for intermediate- to low-temperature solid oxide fuel cells. Journal of Zhejiang University SCIENCE A 14(1): 11-24.
Bu, Y., Zhong, Q., Chen, D.C., Chen, Y., Lai, S.Y., Wei, T.,
Sun, H., Ding, D. & Liu, M. 2016. A high-performance, cobalt-free cathode
for intermediate-temperature solid oxide fuel cells with excellent CO2 tolerance. Journal of Power Sources 319: 178-184.
Chen, M., Zhang, H., Fan, L., Wang, C. & Zhu, B. 2014.
Ceria-carbonate composite for low temperature solid oxide fuel cell: Sintering
aid and composite effect. International Journal of Hydrogen Energy 39(23): 12309-12316.
Choi, H.J., Na, Y.H., Kwak, M., Kim, T.W., Seo, D.W., Woo,
S.K. & Kim, S.D. 2017. Development of solid oxide cells by co-sintering of
GDC diffusion barriers with LSCF air electrode. Ceramics International 43(16): 13653-13660.
Di, J., Chen, M., Wang, C., Zheng, J., Fan, L. & Zhu, B.
2010. Samarium doped ceria–(Li/Na)2CO3 composite
electrolyte and its electrochemical properties in low temperature solid oxide
fuel cell. Journal of Power Sources 195(15): 4695-4699.
Dos Santos-Gómez, L., Porras-Vázquez, J.M., Losilla, E.R.,
Martín, F., Ramos-Barrado, J.R. & Marrero-López, D. 2018. LSCF-CGO
nanocomposite cathodes deposited in a single step by spray-pyrolysis. Journal
of the European Ceramic Society 38(4): 1647-1653.
Fan, L., He, C. & Zhu, B. 2017. Role of carbonate phase
in ceria-carbonate composite for low temperature solid oxide fuel cells: a
review. International Journal of Energy Research 41(4): 465-481.
Ghouse, M., Al-Yousef, Y., Al-Musa, A. & Al-Otaibi,
M.F.F. 2010. Preparation of La0.6Sr0.4Co0.2Fe0.8O3 nanoceramic cathode powders for solid oxide fuel cell (SOFC) application. International
Journal of Hydrogen Energy 35(17): 9411-9419.
Giuliano, A., Carpanese, M.P., Panizza, M., Cerisola, G., Clematis,
D. & Barbucci, A. 2017. Characterisation of La0.6Sr0.4Co0.2Fe0.8O3-δ – Ba0.5Sr0.5Co0.8Fe0.2O3-δ composite as cathode for solid oxide fuel cells. Electrochimica Acta 240: 258-266.
Haider, M.A., Capizzi, A.J., Murayama, M. & McIntosh, S.
2011. Reverse micelle synthesis of perovskite oxide nanoparticles. Solid
State Ionics 196(1): 65-72.
Harris, J., Metcalfe, C., Marr, M., Kuhn, J. & Kesler, O.
2013. Fabrication and characterization of solid oxide fuel cell cathodes made
from nano-structured LSCF-SDC composite feedstock. Journal of Power Sources 239: 234-243.
Huang, J., Gao, Z. & Mao, Z. 2010. Effects of salt
composition on the electrical properties of samaria-doped ceria/carbonate
composite electrolytes for low-temperature SOFCs. International Journal of
Hydrogen Energy 35(9): 4270-4275.
Jaiswal, N., Upadhyay, S., Kumar, D. & Parkash, O. 2015.
Ca2+ and Sr2+ co-doped ceria/carbonates nanocomposites
for low temperature solid oxide fuel cells: Composite effect. Ceramics
International 41(10): 15162-15169.
Jarot, R., Muchtar, A., Wan Daud, W.R., Muhamad, N. &
Majlan, E.H. 2011. Fabrication of porous LSCF-SDC carbonates composite cathode
for solid oxide fuel cell (SOFC) applications. Key Engineering Materials 471: 179-184.
Jiang, S.P. 2006. Activation, microstructure, and
polarization of solid oxide fuel cell cathodes. Journal of Solid State
Electrochemistry 11(1): 93-102.
Jing, Y., Patakangas, J., Lund, P.D. & Zhu, B. 2013. An
improved synthesis method of ceria-carbonate based composite electrolytes for
low-temperature SOFC fuel cells. International Journal of Hydrogen Energy 38(36): 16532-16538.
Khan, I., Asghar, M.I., Lund, P.D. & Basu, S. 2017. High
conductive (LiNaK)2 CO3Ce0.85Sm0.15O2 electrolyte compositions for IT-SOFC applications. International Journal of
Hydrogen Energy 42(32): 20904-20909.
Li, C., Zeng, Y., Wang, Z., Ye, Z. & Zhang, Y. 2017.
Processing temperature tuned interfacial microstructure and protonic and oxide
ionic conductivities of well-sintered Sm0.2Ce0.8O1.9-Na2CO3 nanocomposite electrolytes for intermediate temperature solid oxide fuel cells. Journal of Power Sources 360: 114-123.
Li, W., Cheng, Y., Zhou, Q., Wei, T., Li, Z., Yan, H., Wang,
Z. & Han, X. 2015. Evaluation of double perovskite Sr2FeTiO6−δ as potential cathode or anode materials for intermediate-temperature solid
oxide fuel cells. Ceramics International 41(9): 12393-12400.
Liu, Y.X., Wang, S.F., Hsu, Y.F. & Jasinki, P. 2017.
Characteristics of La0.8Sr0.2Ga0.8Mg0.2O3−δ-supported
micro-tubular solid oxide fuel cells with bi-layer and tri-layer electrolytes. Journal
of the Ceramic Society of Japan 125(4): 236-241.
Ma, Y., Wang, X., Raza, R., Muhammed, M. & Zhu, B. 2010.
Thermal stability study of SDC/Na2CO3 nanocomposite
electrolyte for low-temperature SOFCs. International Journal of Hydrogen
Energy 35(7): 2580-2585.
Mehran, M.T., Song, R.H., Lim, T.H., Lee, S.B., Lee, J.W.
& Park, S.J. 2016. Development of a highly durable anode support for solid
oxide fuel cells. Materials for Energy, Efficiency and Sustainability
TechConnect Briefs 2: 98-101.
Muhammed Ali, S.A., Raharjo, J., Anwar, M., Khaerudini, D.S.,
Muchtar, A., Spiridigliozzi, L. & Somalu, M.R. 2020. Carbonate-based
lanthanum strontium cobalt ferrite (LSCF)-samarium-doped ceria (SDC) composite
cathode for low-temperature solid oxide fuel cells. Applied Sciences 10(11):
3761.
Muhammed Ali, S.A., Anwar, M., Somalu, M.R. & Muchtar, A.
2017. Enhancement of the interfacial polarization resistance of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode by microwave-assisted combustion method. Ceramics
International 43(5): 4647-4654.
Muhammed Ali, S.A., Muchtar, A., Bakar Sulong, A., Muhamad,
N. & Herianto Majlan, E. 2013. Influence of sintering temperature on the
power density of samarium-doped-ceria carbonate electrolyte composites for
low-temperature solid oxide fuel cells. Ceramics International 39(5):
5813-5820.
Patakangas, J., Ma, Y., Jing, Y. & Lund, P. 2014. Review
and analysis of characterization methods and ionic conductivities for
low-temperature solid oxide fuel cells (LT-SOFC). Journal of Power Sources 263: 315-331.
Rahman, H.A., Muchtar, A., Muhamad, N. & Abdullah, H.
2013. La0.6Sr0.4Co0.2Fe0.8O3−δ–SDC
carbonate composite cathodes for low-temperature solid oxide fuel cells. Materials
Chemistry and Physics 141(2-3): 752-757.
Rahman, H.A., Muchtar, A., Muhamad, N. & Abdullah, H.
2012. Structure and thermal properties of La0.6Sr0.4Co0.2Fe0.8O3−δ–SDC
carbonate composite cathodes for intermediate- to low-temperature solid oxide
fuel cells. Ceramics International 38(2): 1571-1576.
Raza, R., Zhu, B., Rafique, A., Naqvi, M.R. & Lund, P.
2020. Functional ceria-based nanocomposites for advanced low temperature
(300-600 °C) solid oxide fuel cell: A comprehensive review. Materials
Today Energy 15: 100373.
Raza, R., Khan, A., Rafique, A., Aunbreen, A., Akhtar, K.,
Ashfaq Ahmad, M., Akhtar, S., Hashmi, K., Ullah, M. & Ali, R. 2017.
Nanocomposite BaZr0.7Sm0.1Y0.2O3−δ–La0.8Sr0.2Co0.2Fe0.8O3−δ materials for single layer fuel cell. International Journal of Hydrogen
Energy 42(34): 22280-22287.
Rembelski, D., Viricelle, J.P., Combemale, L. & Rieu, M.
2012. Characterization and comparison of different cathode materials for
SC-SOFC: LSM, BSCF, SSC, and LSCF. Fuel Cells 12(2): 256-264.
Ristoiu, T., Petrisor, T., Gabor, M., Rada, S., Popa, F.
& Ciontea, L. 2012. Electrical properties of ceria/carbonate
nanocomposites. Journal of Alloys and Compounds 532: 109-113.
Rondão, A.I.B., Patrício, S.G., Figueiredo, F.M.L. &
Marques, F.M.B. 2013. Role of gas-phase composition on the performance of
ceria-based composite electrolytes. International Journal of Hydrogen Energy 38: 5497-5506.
Shawuti, S. & Gulgun, M.A. 2014. Solid oxide-molten
carbonate nano-composite fuel cells: Particle size effect. Journal of Power
Sources 267: 128-135.
Shen, F. & Lu, K. 2015. La0.6Sr0.4Co0.2Fe0.8O3 cathodes incorporated with Sm0.2Ce0.8O2 by
three different methods for solid oxide fuel cells. Journal of Power Sources 296: 318-326.
Tang, Z., Lin, Q., Mellander, B.E. & Zhu, B. 2010.
SDC–LiNa carbonate composite and nanocomposite electrolytes. International
Journal of Hydrogen Energy 35(7): 2970-2975.
Zitouni, B., Ben Moussa, H. & Oulmi, K. 2007. Studying on
the increasing temperature in IT-SOFC: Effect of heat sources. Journal of
Zhejiang University-SCIENCE A 8(9): 1500-1504.
*Corresponding
author; email: hamimah@uthm.edu.my
|