Sains Malaysiana 49(12)(2020): 3209-3217
http://dx.doi.org/10.17576/jsm-2020-4912-32
Electrodeposited WO3/Au
Photoanodes for Photoelectrochemical Reactions
(Pengelektroendapan
Fotoanod WO3/Au untuk Tindak Balas Fotoelektrokimia)
LORNA
JEFFERY MINGGU*, NURUL AKMAL JAAFAR, KIM HANG NG, KHUZAIMAH ARIFIN & ROZAN
MOHAMAD YUNUS
Fuel Cell
Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 17 August 2020/Accepted: 11 September 2020
ABSTRACT
This
work aims to study the effect of gold (Au) loading on the photoelectrochemical
behavior of tungsten trioxide (WO3) photoelectrodes. The WO3 film has been fabricated via electrodeposition method with constant potential
on fluorine doped tin oxide (FTO) glass substrate. The Au nanoparticle loading
on WO3 films surface was also prepared by constant potential
electrodeposition. Due to the small amount of Au loading, the band gap values
of the plasmonized WO3 remained around 2.6 eV. However, during the
photoelectrochemical analysis, the photoactivity of the plasmonized WO3 photoelectrodes improved >100% with a minimal amount of Au loading compared
to the pristine WO3. The photocurrent generation was further
enhanced with the presence of organic donors (methanol and formic acid). The
photocurrent achieved 3.74 mA/cm2 when 1.0 M of formic acid was
added. Plausible charge transfer mechanism was suggested.
Keywords: Au nanoparticles;
electrodeposition; photoelectrochemical; waste degradation; WO3 films
ABSTRAK
Kajian
ini bertujuan untuk menguji kesan muatan aurum (Au) terhadap perilaku
fotoelektrokimia fotoelektrod tungsten trioksida (WO3). Filem WO3 telah dihasilkan melalui kaedah elektroendapan potensi malar ke atas kaca
bersalut timah oksida terdop florin (FTO). Nanopartikel Au dimendapkan ke atas
permukaan filem WO3 dengan kaedah elektroendapan potensi malar.
Jurang tenaga WO3 berplasmon kekal sekitar 2.6 eV disebabkan muatan
Au yang sangat kecil. Namun begitu, semasa analisis fotoelektrokimia,
fotoaktiviti fotoelektrod WO3 berplasmon telah meningkat >100%
dengan muatan Au yang minimum berbanding WO3 tulen. Penjanaan
fotoarus telah ditingkatkan lagi dengan penambahan penderma organik (metanol
dan asid formik). Fotoarus telah mencapai 3.74 mA/cm2 apabila 1.0 M
asid formik ditambahkan. Mekanisma pemindahan cas yang munasabah
juga dicadangkan.
Kata
kunci: Elektroendapan; filem WO3; fotoelektrokimia; nanopartikel Au;
penguraian sisa
REFERENCES
Alenzi, N., Liao, W.S., Cremer, P.S.,
Sanchez-Torres, V., Wood, T.K., Ehlig-Economides, C. & Cheng, Z. 2010.
Photoelectrochemical hydrogen production from water/methanol decomposition
using Ag/TiO2 nanocomposite thin films. International Journal of Hydrogen Energy 35(21): 11768-11775.
Amer, M.S., Arunachalam, P., Al-Mayouf, A.M.,
Prasad, S., Alshalwi, M.N. & Ghanem, M.A. 2019. Mesoporous tungsten
trioxide photoanodes modified with nitrogen-doped carbon quantum dots for
enhanced oxygen evolution photo-reaction. Nanomaterials 9(10): 1502.
Aslam, M., Ismail, I.M.I., Chandrasekaran, S.
& Hameed, A. 2014. Morphology controlled bulk synthesis of disc-shaped WO3 powder and evaluation of its photocatalytic activity for the degradation of
phenols. Journal Hazardous Materials 276: 120-128.
Chakrapani, V., Thangala, J. & Sunkara,
M.K. 2009. WO3 and W2N nanowire arrays for
photoelectrochemical hydrogen production. International
Journal of Hydrogen Energy 34(22): 9050-9059.
Chen, L., Tian, L., Zhao, X., Hu, Z., Fan, J.
& Lv, K. 2020a. SPR effect of Au nanoparticles on the visible
photocatalytic RhB degradation and NO oxidation over TiO2 hollow nanoboxes. Arabian Journal of Chemistry 13(2):
4404-4416.
Chen, Y., Feng, X., Liu, Y. Guan, X., Burda,
C. & Guo, L. 2020b. Metal oxide-based tandem cells for self-biased
photoelectrochemical water splitting. ACS
Energy Letters 5(3): 844-866.
Cheng, Y. 2015. Advances in electrocatalysts
for oxygen evolution reaction of water electrolysis-from metal oxides to carbon
nanotubes. Progress in Natural Science:
Materials International 25(6): 545-553.
Fujishima, A. & Honda, K. 1972.
Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358): 37-38.
Han, S., Li, J., Chen, X., Huang, Y., Liu, C.,
Yang, Y. & Li, W. 2012. Enhancing photoelectrochemical activity of
nanocrystalline WO3 electrodes by surface tuning with Fe(III). International Journal of Hydrogen Energy 37(22): 16810-16816.
Haro, M., Abargues, R., Herraiz-Cardona, I.,
Martínez-Pastor, J. & Giménez, S. 2014. Plasmonic versus catalytic effect
of gold nanoparticles on mesoporous TiO2 electrodes for water
splitting. Electrochimica Acta 144:
64-70.
Hong, S.J., Lee, S., Jang, J.S. & Lee,
J.S. 2011. Heterojunction BiVO4/WO3 electrodes for
enhanced photoactivity of water oxidation. Energy
& Environmental Science 4(5): 1781-1787.
Hu, D., Diao, P., Xu, D. & Wu, Q. 2016.
Gold/WO3 nanocomposite photoanodes for plasmonic solar water
splitting. Nano Research 9(6):
1735-1751.
Jana, S.K., Majumder, T. & Banerjee, S.
2014. Enhanced photoelectrochemical property of gold nanoparticle sensitized
TiO2 nanotube: A crucial investigation at electrode–electrolyte interface. Journal of Electroanalytical Chemistry 727: 99-103.
Johansson, M.B., Niklasson, G.A. &
Österlund, L. 2012. Structural and optical properties of visible active
photocatalytic WO3 thin films prepared by reactive dc magnetron
sputtering. Journal of Materials Research 27(24): 3130-3140.
Jun, J., Ju, S., Moon, S., Son, S., Huh, D.,
Liu, Y., Kim, K. & Lee, H. 2020. The optimization of surface morphology of
Au nanoparticles on WO3 nanoflakes for plasmonic photoanode. Nanotechnology 31(20): 204003.
Kim, M.H., Kim, C.S., Lee, H.W. & Kim, K.
1996. Temperature dependence of dissociation constants for formic acid and
2,6-dinitrophenol in aqueous solutions up to 175 °C. Journal of the Chemical Society, Faraday Transactions 92(24):
4951-4956.
Kwong, W.L., Savvides, N. & Sorrell, C.C.
2012. Electrodeposited nanostructured WO3 thin films for
photoelectrochemical applications. Electrochimica
Acta 75: 371-380.
Lee, J.Y. & Jo, W.K. 2016.
Heterojunction-based two-dimensional N-doped TiO2/WO3 composite architectures for photocatalytic treatment of hazardous organic
vapor. Journal Hazardous Materials 314: 22-31.
Li, J. & Wu, N. 2015. Semiconductor-based
photocatalysts and photoelectrochemical cells for solar fuel generation: A review. Catalysis Science & Technology 5(3):
1360-1384.
Li, Y., Yu, H., Zhang, C., Fu, L., Li, G.,
Shao, Z. & Yi, B. 2013a. Enhancement of photoelectrochemical response by Au
modified in TiO2 nanorods. International
Journal of Hydrogen Energy 38(29): 13023-13030.
Li, Z., Luo, W., Zhang, M., Feng, J. &
Zou, Z. 2013b. Photoelectrochemical cells for solar hydrogen production: Current state of
promising photoelectrodes, methods to improve their properties, and outlook. Energy & Environmental Science 6(2):
347-370.
Lianos, P. 2011. Production of electricity and
hydrogen by photocatalytic degradation of organic wastes in a
photoelectrochemical cell: the concept of the photofuelcell: A review of a
re-emerging research field. Journal
Hazardous Materials 185(2-3): 575-590.
Lui, Y., Chang, Y.S., Hsu, Y.J., Hwang, B.J.
& Hsueh, C.H. 2019. Fabrication of WO3 photoanode decorated with
Au nanoplates and its enhanced photoelectrochemical properties. Electrochimica Acta 321: 134674.
Mi, Y., Wen, L., Xu, R., Wang, Z., Cao, D.,
Fang, Y. & Lei, Y. 2016. Constructing a AZO/TiO2 core/shell nanocone array
with uniformly dispersed Au NPs for enhancing photoelectrochemical water
splitting. Advanced Energy Materials 6(1): 1501496.
Minggu, L.J., Daud, W.R.W. & Kassim, M.B.
2010. An overview of photocells and photoreactors for photoelectrochemical
water splitting. International Journal of
Hydrogen Energy 35(11): 5233-5244.
Minggu, L.J., Ng, K.H., Kadir, H.A. &
Kassim, M.B. 2014. Bilayer n-WO3/p-Cu2O photoelectrode
with photocurrent enhancement in aqueous electrolyte photoelectrochemical
reaction. Ceramics International 40(10): 16015-16021.
Ng, K.H., Minggu, L.J., Jaafar, N.A. &
Kassim, M.B. 2018. Plasmonic resonance effect of aurum on
photoelectrochemical performance of Cu2O photocathode. Sains Malaysiana 47(7): 1511-1516.
Ng, K.H., Minggu, L.J., Jaafar, N.A., Arifin,
K. & Kassim, M.B. 2017. Enhanced plasmonic photoelectrochemical response of
Au sandwiched WO3 photoanodes. Solar
Energy Materials and Solar Cells 172: 361-367.
Ng, K.H., Minggu, L.J. & Kassim, M.B.
2013. Gallium-doped tungsten trioxide thin film photoelectrodes for
photoelectrochemical water splitting. International
Journal of Hydrogen Energy 38(22): 9585-9591.
Nishanthi, S.T., Iyyapushpam, S.,
Sundarakannan, B., Subramanian, E. & Padiyan, D.P. 2015. Plasmonic silver
nanoparticles loaded titania nanotube arrays exhibiting enhanced
photoelectrochemical and photocatalytic activities. Journal of Power Sources 274: 885-893.
Oros-Ruiz, S., Zanella, R., López, R.,
Hernández-Gordillo, A. & Gómez, R. 2013. Photocatalytic hydrogen production
by water/methanol decomposition using Au/TiO2 prepared by
deposition-precipitation with urea. Journal
Hazardous Materials 263: 2-10.
Peerakiatkhajohn, P., Butburee, T., Yun, J.H.,
Chen, H., Richards, R.M. & Wang, L. 2015. A hybrid photoelectrode with
plasmonic Au@TiO2 nanoparticles for enhanced photoelectrochemical
water splitting. Journal of Materials
Chemistry A 3(40): 20127-20133.
Rao, P.M., Cai, L., Liu, C., Cho, I.S., Lee,
C.H., Weisse, J.M., Yang, P. & Zheng, X. 2014. Simultaneously efficient
light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Letters 14(2): 1099-1105.
Raptis, D., Dracopoulos, V. & Lianos, P.
2017. Renewable energy production by photoelectrochemical oxidation of organic
wastes using WO3 photoanodes. Journal
of Hazardous Materials 333: 259-264.
Sheng, C., Wang, C., Wang, H., Jin, C., Sun,
Q. & Li, S. 2017. Self-photodegradation of formaldehyde under visible-light
by solid wood modified via nanostructured Fe-doped WO3 accompanied
with superior dimensional stability. Journal
Hazardous Materials 328: 127-139.
Tee, S.Y., Win, K.Y., Teo, W.S., Koh, L.D.,
Liu, S., Teng, C.P. & Han, M.Y. 2017. Recent progress in energy-driven
water splitting. Advanced Science 4(5): 1600337.
Verma, A., Srivastav, A., Banerjee, A.,
Sharma, D., Sharma, S., Singh, U.B., Satsangi, V.R., Shrivastav, R., Avasthi,
D.K. & Dass, S. 2013. Plasmonic layer enhanced photoelectrochemical
response of Fe2O3 photoanodes. Journal of Power Sources 315: 152-160.
Verma, P., Kuwahara, Y., Mori, K. &
Yamashita, H. 2016. Pd/Ag and Pd/Au bimetallic nanocatalysts on mesoporous
silica for plasmon-mediated enhanced catalytic activity under visible light
irradiation. Journal of Materials Chemistry A 4(26): 10142-10150.
Wang, Y., Chen, K.S., Mishler, J., Cho, S.C.
& Adroher, X.C. 2011. A review of polymer electrolyte membrane fuel cells: Technology,
applications, and needs on fundamental research. Applied
Energy 88(4): 981-1007.
Yan, J., Wu, H., Li, P., Chen, H., Jiang, R.
& Liu, S.F. 2017. Fe(III) doped NiS2 nanosheet: A highly efficient and
low-cost hydrogen evolution catalyst. Journal
of Materials Chemistry A 5(21): 10173-10181.
Yang, Y., Xie, R., Liu, Y., Li, J. & Li, W. 2015.
Effect of surface passivation on photoelectrochemical water splitting
performance of WO3 vertical plate-like films. Catalysts 5(4): 2024-2038.
Ye, W., Long, R., Huang, H. & Xiong, Y.
2017. Plasmonic nanostructures in solar energy conversion. Journal of Materials Chemistry C 5(50): 1008-1021.
Zhang, L., Herrmann, L.O. & Baumberg, J.J.
2015. Size dependent plasmonic effect on BiVO4 photoanodes for solar
water splitting. Scientific Reports 5: 16660.
Zhang, L., Lin, C.Y., Valev, V.K., Reisner,
E., Steiner, U. & Baumberg, J.J. 2014. Plasmonic enhancement in BiVO4 photonic crystals for efficient water splitting. Small 10(19): 3970-3978.
Zhang, X. & Tang, A. 2012. Novel CuO/TiO2 nanocomposite films with a graded band gap for visible light irradiation. Materials Express 2(3): 238-244.
Zhang, Z., Yuan, Y., Fang, Y., Liang, L.,
Ding, H., Shi, G. & Jin, L. 2007. Photoelectrochemical oxidation behavior
of methanol on highly ordered TiO2 nanotube array electrodes. Journal of Electroanalytical Chemistry 610(2): 179-185.
Zhang, X.,
Lu, X., Shen, Y., Han, J., Yuan, L., Gong, L., Xu, Z., Bai, X., Wei, M., Tong,
Y., Gao, Y., Chen, J., Zhou, J. & Wang, Z.L. 2011. Three-dimensional WO3 nanostructures on carbon paper: Photoelectrochemical property and visible light driven photocatalysis. Chemical Communications 47(20):
5804-5806.
Zhu, J., Li, W., Li, J., Li, Y., Hu, H. &
Yang, Y. 2013. Photoelectrochemical activity of NiWO4/ WO3 heterojunction photoanode under visible light irradiation. Electrochimica Acta 112: 191-198.
Zhu, L., Gamez, G., Chen, H., Chingin, K.
& Zenobi, R. 2009. Rapid detection of melamine in untreated milk and wheat
gluten by ultrasound-assisted extractive electrospray ionization mass
spectrometry (EESI-MS). Chemical
Communications 5: 559-561.
Zhu, W., Liu, J., Yu, S., Zhou, Y. & Yan,
X. 2016. Ag loaded WO3 nanoplates for efficient photocatalytic
degradation of sulfanilamide and their bactericidal effect under visible light
irradiation. Journal Hazardous Materials 318: 407-416.
*Corresponding author; email:
lorna_jm@ukm.edu.my
|