Sains Malaysiana 49(12)(2020):
3229-3241
http://dx.doi.org/10.17576/jsm-2020-4912-34
UKM2 Chlorella sp. Strain
Electricity Performance as Bio-anode under Different Light Wavelength in a Biophotovoltaic Cell
(Prestasi Elektrik Strain UKM2 Chlorella sp. sebagai Bio-anod di bawah Gelombang Cahaya Berbeza dalam Sel Biofotovoltan)
AISYAH NADHIRAH
JUHARI1, MUHD SYAZWAN SHARANI2, WAN RAMLI WAN
DAUD1,2, TAHEREH JAFARY3 & MIMI HANI ABU BAKAR1*
1Fuel Cell
Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Faculty of
Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
3Process
Engineering Department, International Maritime College, Sohar,
Oman
Received:
17 August 2020/Accepted: 11 September 2020
ABSTRACT
A biophotovoltaic cell (BPV) is an electrobiochemical system that
utilises a photosynthetic microorganism for instance is algae to trap sunlight
energy and convert it into electricity. In this study, a local algae strain,
UKM2 Chlorella sp. was
grown in a BPV under different trophic conditions and light wavelengths. Once
the acclimatisation phase succeeded, and biofilm formed, power generation by
UKM2 algae at the autotrophic mode in synthetic Bold’s Basal media (BBM) under
white, blue and red lights were tested. Polarisation and power curves were
generated at these different conditions to study the bioelectrochemical performance of the system. Later, the condition switched to algal mixotrophic nutritional mode, with palm oil mill effluent
(POME) as substrate. Maximum power generation obtained when using UKM2 in BBM
under red light where a power density of 1.19 ± 0.16 W/m3 was
obtained at 25.74 ± 3.89 A/m3 current density, while the open
circuit voltage OCV reached 226.08 ± 8.71 mV. UKM2 in POME under blue light
recorded maximum power density of 0.85 ± 0.18 W/m3 at current
density of 16.75 ± 3.54 A/m3, while the OCV reached 214.05 ± 23.82
mV. Chemical oxygen demand (COD) removal reached an efficiency of 35.93%,
indicating the ability of wastewater treatment and electricity generation in
BPV at the same time
Keywords: Algae;
bioelectricity; biophotovoltaic; monochromatic light
ABSTRAK
Sel biofotovoltan (BPV) ialah satu sistem elektrobiokimia yang menggunakan mikroorganisma fotosintetik seperti alga untuk memerangkap tenaga cahaya matahari dan menukarkannya kepada elektrik. Dalam kajian ini,
UKM2 Chlorella sp. iaitu strain alga tempatan yang ditempatkan di dalam BPV yang berbeza keadaan trofik dan gelombang cahaya. Apabila fasa aklimatisasi telah berjaya dan biofilem telah terhasil, kuasa tenaga yang telah dihasilkan oleh alga UKM2 dalam mod autotrofik sintetik Bolds’s Basal Media
(BBM) di bawah cahaya putih, biru, dan merah telah diuji. Lengkungan polarisasi dan lengkungan kuasa telah dihasilkan bagi keadaan yang berbeza-beza ini adalah untuk mengkaji pencapaian bioelektrokimia sistem tersebut. Setelah itu, keadaan tersebut diubah kepada alga mod campuran trofik nutrisi, dengan menggunakan sisa efluen minyak kelapa sawit sebagai substrat. Kuasa maksimum yang dihasilkan diperoleh menggunakan UKM2 di dalam BBM di bawah cahaya merah dengan ketumpatan kuasa sebanyak 1.19 ± 0.16 W/m3 telah diperoleh pada ketumpatan arus 16.75 ± 3.54 A/m3, manakala OCV pula mencecah sebanyak 226.08 ± 8.71 mV. Permintaan kimia oksigen (COD) yang dibuang mencapai tahap keefisienan sebanyak 35.93%, yang menunjukkan keupayaan untuk merawat sisa air buangan dan penghasilan elektrik pada BPV dalam pada masa yang sama.
Kata kunci: Alga; bioelektrik; biofotovoltan; cahaya monokromatik
References
Anderson,
A., Laohavisit, A., Blaby, I.K., Bombelli,
P., Howe, C.J., Merchant, S.S., Davies, J.M. & Smith, A.G. 2016. Exploiting
algal NADPH oxidase for biophotovoltaic energy. Plant
Biotechnology Journal 14(1): 22-28.
Baicha, Z., Salar-García,
M.J., Ortiz-Martínez, V.M., Hernández-Fernández, F.J., De los Ríos,
A.P., Labjar, N., Lotfi, E.
& Elmahi, M. 2016. A critical review on
microalgae as an alternative source for bioenergy production: A promising low
cost substrate for microbial fuel cells. Fuel Processing Technology 154:
104-116.
Barber,
M.J., Notton, B.A. & Solomonson,
L.P. 1987. Oxidation-reduction midpoint potentials of the molybdenum center in spinach NADH: Nitrate reductase. FEBS Letters 213(2): 372-374.
Connolly,
J.S., Samuel, E.B. & Janzen, A.F. 1982. Effects of solvent on the
fluorescence properties of bacteriochlorophyll a. Photochemistry and
Photobiology 36(5): 565-574.
Cui, Y.,
Rashid, N., Hu, N., Rehman, M.S.U. & Han, J.I.
2014. Electricity generation and microalgae cultivation in microbial fuel cell
using microalgae-enriched anode and bio-cathode. Energy Conversion and
Management 79: 674-680.
Daud, S.M., Daud,
W.R.W., Kim, B.H., Somalu, M.R., Bakar, M.H.A., Muchtar, A., Jahim, J.M., Lim,
S.S. & Chang, I.S. 2018. Comparison of performance and ionic concentration
gradient of two-chamber microbial fuel cell using ceramic membrane (CM) and
cation exchange membrane (CEM) as separators. Electrochimica Acta 259: 365-376.
De Caprariis, B., De Filippis, P.,
Di Battista, A., Di, L. & Palma, M.S. 2014. Exoelectrogenic activity of a green microalgae, Chlorella
vulgaris, in a bio-photovoltaic cells (bpvs). Chemical
Engineering Transactions 38: 523-528.
Dolai, U. 2016. Complete procedure of
biochemical reaction in photolysis. Journal of Plant Biochemistry &
Physiology 4(165): 1-2.
EIA 2017.
International Energy Outlook 2017. United States: U.S. Energy Information
Administration (EIA). Accessed on 11 April 2018.
Ghoreyshi, A.A., Jafary,
T., Najafpour, G.D. & Haghparast,
F. 2011. Effect of type and concentration of substrate on power generation in a
dual chambered microbial fuel cell. In World Renewable Energy
Congress-Sweden 2011: 1174-1181.
Hariz, H.B. & Takriff,
M.S. 2017. Growth and biomass production of native microalgae Chlorella sp., Chlamydomonas sp., and Scenedesmus sp. cultivated in palm oil mill effluent (POME) at different
cultivation conditions. Transactions on Science and Technology 4(3):
298-311.
Hariz, H.B., Takriff,
M.S., Yasin, N.H.M., Ba-Abbad,
M.M. & Hakimi, N.I.N.M. 2019. Potential of the
microalgae-based integrated wastewater treatment and CO2 fixation
system to treat palm oil mill effluent (POME) by indigenous microalgae; Scenedesmus sp. and Chlorella sp. Journal of Water
Process Engineering 32: 100907.
Hazman, N.A.S., Yasin,
N.H.M., Takriff, M.S., Hasan, H.A., Kamarudin, K.F. & Hakimi,
N.I.N.M. 2018. Integrated palm oil mill effluent treatment and CO2 sequestration by microalgae. Sains Malaysiana 47(7): 1455-1464.
Jadhav, D.A., Jain, S.C. & Ghangrekar, M.M. 2017. Simultaneous wastewater treatment,
algal biomass production and electricity generation in clayware microbial carbon capture cells. Applied Biochemistry and Biotechnology 183(3): 1076-1092.
Jafary, T., Daud,
W.R.W., Ghasemi, M., Bakar, M.H.A., Sedighi, M., Kim, B.H., Carmona-Martínez,
A.A., Jahim, J.M. & Ismail, M. 2019. Clean
hydrogen production in a full biological microbial electrolysis cell. International
Journal of Hydrogen Energy 44(58): 30524-30531.
Jones, G.A.
& Warner, K.J. 2016. The 21st century population-energy-climate nexus. Energy
Policy 93: 206-212.
Kim, J.,
Lee, J.Y., Ahting, C., Johnstone, R. & Lu, T.
2014. Growth of Chlorella vulgaris using sodium bicarbonate under no mixing condition. Asia Pacific Journal
Chemical Engineering 9(4): 604-609.
Lan,
J.C.W., Raman, K., Huang, C.M. & Chang, C.M. 2013. The impact of
monochromatic blue and red LED light upon performance of photo microbial fuel
cells (PMFCs) using Chlamydomonas reinhardtii transformation F5 as biocatalyst. Biochemistry
Engineering Journal 78: 39-43.
Logan, B.E.
2008. Microbial Fuel Cell. New York: John Wiley & Sons.
McCormick,
A.J., Bombelli, P., Bradley, R.W., Thorne, R.,
Wenzel, T. & Howe, C.J. 2015. Biophotovoltaics:
Oxygenic photosynthetic organisms in the world of bioelectrochemical systems. Energy & Environmental Science 8(4): 1092-1109.
McCormick,
A.J., Bombelli, P., Scott, A.M., Philips, A.J.,
Smith, A.G., Fisher, A.C. & Howe, C.J. 2011. Photosynthetic biofilms in
pure culture harness solar energy in a mediatorless bio-photovoltaic cell (BPV) system. Energy & Environmental Science 4(11): 4699-4709.
Mokashi, K., Shetty, V., George, S.A.
& Sibi, G. 2016. Sodium bicarbonate as inorganic
carbon source for higher biomass and lipid production integrated carbon capture
in Chlorella vulgaris. Achievements
in the Life Sciences 10(1): 111-117.
Ng, F.L., Phang, S.M., Periasamy, V., Beardall, J., Yunus, K. &
Fisher, A.C. 2018. Algal biophotovoltaic (BPV) device
for generation of bioelectricity using Synechococcus elongatus (Cyanophyta). Journal of Applied Phycology 30(6): 2981-2988.
Ng, F.L., Phang, S.M., Periasamy, V., Yunus, K. & Fisher, A.C. 2014. Evaluation of algal
biofilms on indium tin oxide (ITO) for use in biophotovoltaic platforms based on photosynthetic performance. PLoS ONE 9(5): e97643.
Rahimnejad, M., Bakeri,
G., Najafpour, G., Ghasemi,
M. & Oh, S.E. 2014. A review on the effect of proton exchange membranes in
microbial fuel cells. Biofuel Resources Journal 1(1): 7-15.
Rodrigues,
D.D.S. 2014. Microbial
community optimization for electricity generation in microbial fuel cells. Master Thesis. Lisboa, Portugal: Instituto Superior Técnico. (Unpublished).
Rusli, S.F.N., Bakar, M.H.A., Rani, S.J.A., Loh, K.S. & Mastar, M.S.
2018. Aryl diazonium modification for improved graphite
fibre brush in microbial fuel cell. Sains Malaysiana 47(12): 3017-3023.
Saar, K.L., Bombelli, P., Lea-Smith, D.J., Call, T., Aro, E.M., Müller, T., Howe, C.J. & Knowles, T.P. 2018.
Enhancing power density of biophotovoltaics by
decoupling storage and power delivery. Nature Energy 3(1): 75-81.
Saratale, R.G., Kuppam,
C., Mudhoo, A., Saratale,
G.D., Periyasamy, S., Zhen, G., Koók,
L., Bakonyi, P., Nemestóthy,
N. & Kumar, G. 2017. Bioelectrochemical systems
using microalgae - a concise research update. Chemosphere 177: 35-43.
Shamsuddin, R.A., Daud,
W.R.W., Kim, B.H., Jahim, J.M., Bakar, M.H.A., Noor,
W.S.A.M. & Yunus, R.M. 2018. Electrochemical
characterisation of heat-treated metal and non-metal anodes using mud in
microbial fuel cell. Sains Malaysiana 47(12): 3043-3049.
Singh, S.P.
& Singh, P. 2015. Effect of temperature and light on the growth of algae
species: A review. Renewable Sustainable Energy Review 50: 431-444.
Subhash, G.V., Chandra, R. & Mohan,
S.V. 2013. Microalgae mediated bio-electrocatalytic fuel cell facilitates bioelectricity generation through oxygenic photomixotrophic mechanism. Bioresources Technology 136: 644-653.
Thong,
C.H., Phang, S.M., Ng, F.L., Periasamy,
V., Ling, T.C., Yunus, K. & Fisher, A.C. 2019.
Effect of different irradiance levels on bioelectricity generation from algal biophotovoltaic (BPV) devices. Energy Science &
Engineering 7(5): 2086-2097.
Ucar, D., Zhang, Y. & Angelidaki,
I. 2017. An overview of electron acceptors in microbial fuel cells. Frontier
Microbiology 8: 643.
USGS 2018.
Alternative sources of energy - An introduction to fuel cells. In U.S.
Geological Survey Bulletin 2179. United States: United States Geological
Survey (USGS). Accessed on 11 April 2018.
Wang, X.,
Feng, Y., Liu, J., Lee, H., Li, C., Li, N. & Ren, N. 2010. Sequestration of
CO2 discharged from anode by algal cathode in microbial carbon
capture cells (MCCs). Biosensors Bioelectronics 25(12): 2639-2643.
Yan, C.,
Zhao, Y., Zheng, Z. & Luo, X. 2013. Effects of various LED light
wavelengths and light intensity supply strategies on synthetic high-strength
wastewater purification by Chlorella vulgaris. Biodegradation 24(5): 721-732.
Zhou, M.,
He, H., Jin, T. & Wang, H. 2012. Power generation
enhancement in novel microbial carbon capture cells with immobilized Chlorella
vulgaris. Journal of Power Sources 214: 216-219.
Zou, Y., Pisciotta, J., Billmyre, R.B.
& Baskakov, I.V. 2009. Photosynthetic microbial
fuel cells with positive light response. Biotechnology Bioengineering 104(5): 939-946.
*Corresponding
author; email: mimihani@ukm.edu.my
|