Sains Malaysiana 49(12)(2020): 3229-3241

http://dx.doi.org/10.17576/jsm-2020-4912-34

 

UKM2 Chlorella sp. Strain Electricity Performance as Bio-anode under Different Light Wavelength in a Biophotovoltaic Cell

(Prestasi Elektrik Strain UKM2 Chlorella sp. sebagai Bio-anod di bawah Gelombang Cahaya Berbeza dalam Sel Biofotovoltan)

 

AISYAH NADHIRAH JUHARI1, MUHD SYAZWAN SHARANI2, WAN RAMLI WAN DAUD1,2, TAHEREH JAFARY3 & MIMI HANI ABU BAKAR1*

 

1Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Process Engineering Department, International Maritime College, Sohar, Oman

 

Received: 17 August 2020/Accepted: 11 September 2020

 

ABSTRACT

A biophotovoltaic cell (BPV) is an electrobiochemical system that utilises a photosynthetic microorganism for instance is algae to trap sunlight energy and convert it into electricity. In this study, a local algae strain, UKM2 Chlorella sp. was grown in a BPV under different trophic conditions and light wavelengths. Once the acclimatisation phase succeeded, and biofilm formed, power generation by UKM2 algae at the autotrophic mode in synthetic Bold’s Basal media (BBM) under white, blue and red lights were tested. Polarisation and power curves were generated at these different conditions to study the bioelectrochemical performance of the system. Later, the condition switched to algal mixotrophic nutritional mode, with palm oil mill effluent (POME) as substrate. Maximum power generation obtained when using UKM2 in BBM under red light where a power density of 1.19 ± 0.16 W/m3 was obtained at 25.74 ± 3.89 A/m3 current density, while the open circuit voltage OCV reached 226.08 ± 8.71 mV. UKM2 in POME under blue light recorded maximum power density of 0.85 ± 0.18 W/m3 at current density of 16.75 ± 3.54 A/m3, while the OCV reached 214.05 ± 23.82 mV. Chemical oxygen demand (COD) removal reached an efficiency of 35.93%, indicating the ability of wastewater treatment and electricity generation in BPV at the same time

 

Keywords: Algae; bioelectricity; biophotovoltaic; monochromatic light

 

ABSTRAK

Sel biofotovoltan (BPV) ialah satu sistem elektrobiokimia yang menggunakan mikroorganisma fotosintetik seperti alga untuk memerangkap tenaga cahaya matahari dan menukarkannya kepada elektrik. Dalam kajian ini, UKM2 Chlorella sp. iaitu strain alga tempatan yang ditempatkan di dalam BPV yang berbeza keadaan trofik dan gelombang cahaya. Apabila fasa aklimatisasi telah berjaya dan biofilem telah terhasil, kuasa tenaga yang telah dihasilkan oleh alga UKM2 dalam mod autotrofik sintetik Bolds’s Basal Media (BBM) di bawah cahaya putih, biru, dan merah telah diuji. Lengkungan polarisasi dan lengkungan kuasa telah dihasilkan bagi keadaan yang berbeza-beza ini adalah untuk mengkaji pencapaian bioelektrokimia sistem tersebut. Setelah itu, keadaan tersebut diubah kepada alga mod campuran trofik nutrisi, dengan menggunakan sisa efluen minyak kelapa sawit sebagai substrat. Kuasa maksimum yang dihasilkan diperoleh menggunakan UKM2 di dalam BBM di bawah cahaya merah dengan ketumpatan kuasa sebanyak 1.19 ± 0.16 W/m3 telah diperoleh pada ketumpatan arus 16.75 ± 3.54 A/m3, manakala OCV pula mencecah sebanyak 226.08 ± 8.71 mV. Permintaan kimia oksigen (COD) yang dibuang mencapai tahap keefisienan sebanyak 35.93%, yang menunjukkan keupayaan untuk merawat sisa air buangan dan penghasilan elektrik pada BPV dalam pada masa yang sama.

 

Kata kunci: Alga; bioelektrik; biofotovoltan; cahaya monokromatik

 

References

Anderson, A., Laohavisit, A., Blaby, I.K., Bombelli, P., Howe, C.J., Merchant, S.S., Davies, J.M. & Smith, A.G. 2016. Exploiting algal NADPH oxidase for biophotovoltaic energy. Plant Biotechnology Journal 14(1): 22-28.

Baicha, Z., Salar-García, M.J., Ortiz-Martínez, V.M., Hernández-Fernández, F.J., De los Ríos, A.P., Labjar, N., Lotfi, E. & Elmahi, M. 2016. A critical review on microalgae as an alternative source for bioenergy production: A promising low cost substrate for microbial fuel cells. Fuel Processing Technology 154: 104-116.

Barber, M.J., Notton, B.A. & Solomonson, L.P. 1987. Oxidation-reduction midpoint potentials of the molybdenum center in spinach NADH: Nitrate reductase. FEBS Letters 213(2): 372-374.

Connolly, J.S., Samuel, E.B. & Janzen, A.F. 1982. Effects of solvent on the fluorescence properties of bacteriochlorophyll a. Photochemistry and Photobiology 36(5): 565-574.

Cui, Y., Rashid, N., Hu, N., Rehman, M.S.U. & Han, J.I. 2014. Electricity generation and microalgae cultivation in microbial fuel cell using microalgae-enriched anode and bio-cathode. Energy Conversion and Management 79: 674-680.

Daud, S.M., Daud, W.R.W., Kim, B.H., Somalu, M.R., Bakar, M.H.A., Muchtar, A., Jahim, J.M., Lim, S.S. & Chang, I.S. 2018. Comparison of performance and ionic concentration gradient of two-chamber microbial fuel cell using ceramic membrane (CM) and cation exchange membrane (CEM) as separators. Electrochimica Acta 259: 365-376.

De Caprariis, B., De Filippis, P., Di Battista, A., Di, L. & Palma, M.S. 2014. Exoelectrogenic activity of a green microalgae, Chlorella vulgaris, in a bio-photovoltaic cells (bpvs). Chemical Engineering Transactions 38: 523-528.

Dolai, U. 2016. Complete procedure of biochemical reaction in photolysis. Journal of Plant Biochemistry & Physiology 4(165): 1-2.

EIA 2017. International Energy Outlook 2017. United States: U.S. Energy Information Administration (EIA). Accessed on 11 April 2018.

Ghoreyshi, A.A., Jafary, T., Najafpour, G.D. & Haghparast, F. 2011. Effect of type and concentration of substrate on power generation in a dual chambered microbial fuel cell. In World Renewable Energy Congress-Sweden 2011: 1174-1181.

Hariz, H.B. & Takriff, M.S. 2017. Growth and biomass production of native microalgae Chlorella sp., Chlamydomonas sp., and Scenedesmus sp. cultivated in palm oil mill effluent (POME) at different cultivation conditions. Transactions on Science and Technology 4(3): 298-311.

Hariz, H.B., Takriff, M.S., Yasin, N.H.M., Ba-Abbad, M.M. & Hakimi, N.I.N.M. 2019. Potential of the microalgae-based integrated wastewater treatment and CO2 fixation system to treat palm oil mill effluent (POME) by indigenous microalgae; Scenedesmus sp. and Chlorella sp. Journal of Water Process Engineering 32: 100907.

Hazman, N.A.S., Yasin, N.H.M., Takriff, M.S., Hasan, H.A., Kamarudin, K.F. & Hakimi, N.I.N.M. 2018. Integrated palm oil mill effluent treatment and CO2 sequestration by microalgae. Sains Malaysiana 47(7): 1455-1464.

Jadhav, D.A., Jain, S.C. & Ghangrekar, M.M. 2017. Simultaneous wastewater treatment, algal biomass production and electricity generation in clayware microbial carbon capture cells. Applied Biochemistry and Biotechnology 183(3): 1076-1092.

Jafary, T., Daud, W.R.W., Ghasemi, M., Bakar, M.H.A., Sedighi, M., Kim, B.H., Carmona-Martínez, A.A., Jahim, J.M. & Ismail, M. 2019. Clean hydrogen production in a full biological microbial electrolysis cell. International Journal of Hydrogen Energy 44(58): 30524-30531.

Jones, G.A. & Warner, K.J. 2016. The 21st century population-energy-climate nexus. Energy Policy 93: 206-212.

Kim, J., Lee, J.Y., Ahting, C., Johnstone, R. & Lu, T. 2014. Growth of Chlorella vulgaris using sodium bicarbonate under no mixing condition. Asia Pacific Journal Chemical Engineering 9(4): 604-609.

Lan, J.C.W., Raman, K., Huang, C.M. & Chang, C.M. 2013. The impact of monochromatic blue and red LED light upon performance of photo microbial fuel cells (PMFCs) using Chlamydomonas reinhardtii transformation F5 as biocatalyst. Biochemistry Engineering Journal 78: 39-43.

Logan, B.E. 2008. Microbial Fuel Cell. New York: John Wiley & Sons.

McCormick, A.J., Bombelli, P., Bradley, R.W., Thorne, R., Wenzel, T. & Howe, C.J. 2015. Biophotovoltaics: Oxygenic photosynthetic organisms in the world of bioelectrochemical systems. Energy & Environmental Science 8(4): 1092-1109.

McCormick, A.J., Bombelli, P., Scott, A.M., Philips, A.J., Smith, A.G., Fisher, A.C. & Howe, C.J. 2011. Photosynthetic biofilms in pure culture harness solar energy in a mediatorless bio-photovoltaic cell (BPV) system. Energy & Environmental Science 4(11): 4699-4709.

Mokashi, K., Shetty, V., George, S.A. & Sibi, G. 2016. Sodium bicarbonate as inorganic carbon source for higher biomass and lipid production integrated carbon capture in Chlorella vulgaris. Achievements in the Life Sciences 10(1): 111-117.

Ng, F.L., Phang, S.M., Periasamy, V., Beardall, J., Yunus, K. & Fisher, A.C. 2018. Algal biophotovoltaic (BPV) device for generation of bioelectricity using Synechococcus elongatus (Cyanophyta). Journal of Applied Phycology 30(6): 2981-2988.

Ng, F.L., Phang, S.M., Periasamy, V., Yunus, K. & Fisher, A.C. 2014. Evaluation of algal biofilms on indium tin oxide (ITO) for use in biophotovoltaic platforms based on photosynthetic performance. PLoS ONE 9(5): e97643.

Rahimnejad, M., Bakeri, G., Najafpour, G., Ghasemi, M. & Oh, S.E. 2014. A review on the effect of proton exchange membranes in microbial fuel cells. Biofuel Resources Journal 1(1): 7-15.

Rodrigues, D.D.S. 2014. Microbial community optimization for electricity generation in microbial fuel cells. Master Thesis. Lisboa, Portugal: Instituto Superior Técnico. (Unpublished).

Rusli, S.F.N., Bakar, M.H.A., Rani, S.J.A., Loh, K.S. & Mastar, M.S. 2018. Aryl diazonium modification for improved graphite fibre brush in microbial fuel cell. Sains Malaysiana 47(12): 3017-3023.

Saar, K.L., Bombelli, P., Lea-Smith, D.J., Call, T., Aro, E.M., Müller, T., Howe, C.J. & Knowles, T.P. 2018. Enhancing power density of biophotovoltaics by decoupling storage and power delivery. Nature Energy 3(1): 75-81.

Saratale, R.G., Kuppam, C., Mudhoo, A., Saratale, G.D., Periyasamy, S., Zhen, G., Koók, L., Bakonyi, P., Nemestóthy, N. & Kumar, G. 2017. Bioelectrochemical systems using microalgae - a concise research update. Chemosphere 177: 35-43.

Shamsuddin, R.A., Daud, W.R.W., Kim, B.H., Jahim, J.M., Bakar, M.H.A., Noor, W.S.A.M. & Yunus, R.M. 2018. Electrochemical characterisation of heat-treated metal and non-metal anodes using mud in microbial fuel cell. Sains Malaysiana 47(12): 3043-3049.

Singh, S.P. & Singh, P. 2015. Effect of temperature and light on the growth of algae species: A review. Renewable Sustainable Energy Review 50: 431-444.

Subhash, G.V., Chandra, R. & Mohan, S.V. 2013. Microalgae mediated bio-electrocatalytic fuel cell facilitates bioelectricity generation through oxygenic photomixotrophic mechanism. Bioresources Technology 136: 644-653.

Thong, C.H., Phang, S.M., Ng, F.L., Periasamy, V., Ling, T.C., Yunus, K. & Fisher, A.C. 2019. Effect of different irradiance levels on bioelectricity generation from algal biophotovoltaic (BPV) devices. Energy Science & Engineering 7(5): 2086-2097.

Ucar, D., Zhang, Y. & Angelidaki, I. 2017. An overview of electron acceptors in microbial fuel cells. Frontier Microbiology 8: 643.

USGS 2018. Alternative sources of energy - An introduction to fuel cells. In U.S. Geological Survey Bulletin 2179. United States: United States Geological Survey (USGS). Accessed on 11 April 2018.

Wang, X., Feng, Y., Liu, J., Lee, H., Li, C., Li, N. & Ren, N. 2010. Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs). Biosensors Bioelectronics 25(12): 2639-2643.

Yan, C., Zhao, Y., Zheng, Z. & Luo, X. 2013. Effects of various LED light wavelengths and light intensity supply strategies on synthetic high-strength wastewater purification by Chlorella vulgaris. Biodegradation 24(5): 721-732.

Zhou, M., He, H., Jin, T. & Wang, H. 2012. Power generation enhancement in novel microbial carbon capture cells with immobilized Chlorella vulgaris. Journal of Power Sources 214: 216-219.

Zou, Y., Pisciotta, J., Billmyre, R.B. & Baskakov, I.V. 2009. Photosynthetic microbial fuel cells with positive light response. Biotechnology Bioengineering 104(5): 939-946.

 

*Corresponding author; email: mimihani@ukm.edu.my

   

 

 

previous