Sains Malaysiana 49(2)(2020): 261-270

http://dx.doi.org/10.17576/jsm-2020-4902-04

 

ACE-Inhibitory and Antioxidant Activities of Hydrolysates from the By-Products of Hybrid Grouper (Epinephelus lanceolatus × Epinephelus fuscoguttatus)

(Aktiviti Perencantan-ACE dan Antioksidan Hidrolisat daripada Hasil Sampingan Ikan Kerapu Kacukan (Epinephelus lanceolatus × Epinephelus fuscoguttatus))

 

PEI-TENG, CHAN1, PATRICIA MATANJUN1, CAHYO BUDIMAN2, ROSSITA SHAPAWI3 & JAU-SHYA, LEE1*

 

1Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia

 

2Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia

 

3Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia

 

Received: 21 March 2019/Accepted: 29 October 2019

 

ABSTRACT

Protein hydrolysates, generated from the by-products of fish, have received much attention over recent years, due to their antihypertensive and antioxidant activities. The potency of bioactive peptides, however, is affected by the type of enzyme selected and the duration of hydrolysis required to generate the protein hydrolysate. This study was aimed to investigate the effects of using four different enzymes (Alcalase, Proteinase K, Trypsin, and Pepsin) and hydrolysis time (1 - 48 h), on the ACE-inhibitory and antioxidant activities (hydroxyl radical scavenging activity and reducing power), of protein hydrolysates from the head and bones of hybrid grouper (Epinephelus lanceolatus × Epinephelus fuscoguttatus). Among the enzymes tested, Alcalase was the most effective enzyme hydrolysing the by-product of hybrid grouper, followed by Proteinase K, Trypsin, and Pepsin (p < 0.05). According to the results attained, enzyme with the higher degree of hydrolysis exhibited higher antioxidant activities, but not ACE-inhibitory activity. This indicates that the ACE-inhibition potency of hydrolysate, from the by-product of hybrid grouper, is very much dependent on the type of enzyme, and the treatment duration during hydrolysis. The ACE-inhibitory activity of Alcalase and Trypsin hydrolysates was found to decrease in tandem with the increase in hydrolysis time. On the other hand, a longer hydrolysis time resulted in a higher ACE-inhibitory activity for Proteinase K and Pepsin hydrolysate (p < 0.05). The results attained suggest that the selection of an appropriate enzyme, together with an effective hydrolysis time, can enhance the bioactivities of the hydrolysate obtained from the by-product of hybrid grouper.

 

Keywords: ACE-inhibitory activity; Alcalase; Pepsin; Proteinase K; Trypsin

 

ABSTRAK

Kebelakangan ini, hidrolisat protein yang dihasilkan daripada bahan sampingan ikan telah mendapat banyak tumpuan disebabkan keupayaannya menunjukkan aktiviti antihipertensi dan antiosidan. Potensi bioaktif peptida bagaimanapun dipengaruhi oleh jenis enzim dan tempoh hidrolisis yang digunakan untuk menghasilkan hidrolisat protein. Kajian ini bertujuan untuk mengkaji kesan enzim (Alkalase, Proteinase K, Tripsin, dan Pepsin) dan masa hidrolisis (1 - 48 jam) yang berbeza terhadap aktiviti perencatan-ACE dan antioksidan (aktiviti pemerangkapan radikal hidroksil dan kuasa penurunan) hidrolisat yang dihasilkan daripada kepala dan tulang ikan kerapu kacukan (Epinephelus lanceolatus × Epinephelus fuscoguttatus). Antara enzim yang digunakan, Alkalase merupakan enzim yang paling berkesan untuk menghidrolisiskan hasil sampingan ikan kerapu kacukan, diikuti dengan Proteinase K, Tripsin dan Pepsin (p < 0.05). Berdasarkan hasil kajian yang diperoleh, enzim dengan darjah hidrolisis yang tinggi merekodkan aktiviti antioksidan yang tinggi tetapi tidak dengan aktiviti perencatan-ACE. Ini menunjukkan potensi aktiviti perencatan-ACE hidrolisat daripada hasil sampingan ikan kerapu kacukan amat bergantung kepada jenis enzim dan masa rawatan sewaktu hidrolisis. Aktiviti perencantan-ACE bagi hidrolisat Alkalase dan Tripsin didapati menurun dengan peningkatan masa hidrolisis. Sebaliknya, masa hidrolisis yang panjang mengakibatkan aktiviti perencatan-ACE yang lebih tinggi bagi hidrolisat Proteinase K dan Pepsin (p < 0.05). Hasil keputusan kajian ini mencadangkan bahawa pemilihan enzim yang betul digabungkan dengan masa hidrolisis yang berkesan dapat menambahbaikan bioaktiviti hidrolisat yang diperoleh daripada hasil sampingan ikan kerapu kacukan.  

 

Kata kunci: Aktiviti perencantan-ACE; Alkalase; Pepsin; Proteinase K; Tripsin

 

REFERENCES

Adler-Nissen, J. 1993. Proteases. In Enzymes in Food Processing, edited by Nagodawithana, T. & Reed, G. 3rd ed. San Diego: Academic Press Inc. pp. 167-199.

Aluko, R.E. 2012. Bioactive peptides. In Functional Foods and Nutraceuticals, edited by Aluko, R.E. New York: Springer-Verlag. pp. 37-61.

Ambigaipalan, P. & Shahidi, F. 2015. Date seed flour and hydrolysates affect physicochemical properties of muffin. Food Bioscience 12: 54-60.

Barzideh, Z., Latiff, A.A., Gan, C. & Alias, A.K. 2014. ACE inhibitory and antioxidant activities of collagen hydrolysates from the ribbon jellyfish (Chrysaora sp.). Food Technology and Biotechnology 52(4): 495-504.

Byun, H.G. & Kim, S.K. 2001. Purification and characterization of angiotensin I converting enzyme (ACE) inhibitory peptides from Alaska pollack (Theragra chalcogramma) skin. Process Biochemistry 36(12): 1155-1162.

Chalamaiah, M., Dinesh Kumar, B., Hemalatha, R. & Jyothirmayi, T. 2012. Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chemistry 135: 3020-3038.

Choonpicharn, S., Jaturasitha, S., Rakariyatham, N., Suree, N. & Niamsup, H. 2014. Antioxidant and antihypertensive activity of gelatin hydrolysate from Nile tilapia skin. Journal of Food Science and Technology 52: 3134-3139.

Chi, C.F., Wang, B., Wang, Y.M., Zhang, B. & Deng, S.G. 2015. Isolation and characterization of three antioxidant peptides from protein hydrolysate of Bluefin leatherjacket (Navodon septentrionalis) heads. Journal of Functional Foods 12: 1-10.

Coggins, P.C. & Chamul, R.S. 2006. Food sensory attributes. In Handbook of Food Science, Technology, and Engineering, edited by Hui, Y.H. Boca Raton: CRC Press. pp. 58-26-58-31.

De, M., Mazlan, A.G. & Simon, K.D. 2014. Temperature effect on gastric emptying time of hybrid grouper (Epinephelus spp.). AIP Conference Proceedings 1614: 616-618.

Ennaas, N., Hammami, R., Beaulieu, L. & Fliss, I. 2015. Purification and characterization of four antibacterial peptides from protamex hydrolysate of Atlantic mackerel (Scomber scombrus) by-products. Biochemical and Biophysical Research Communications 462(3): 195-200.

Firdaus, R.F., Lim, L.S., Kawamura, G. & Shapawi, R. 2016. Assessment on the acceptability of hybrid grouper, Epinephelus fuscoguttatus ♀× Epinephelus lanceolatus to soybean meal-based diets. AACL Bioflux 9(2): 284-290.

Forghani, B., Ebrahimpour, A., Bakar, J., Abdul Hamid, A., Hassan, Z. & Saari, N. 2012. Enzyme hydrolysates from Stichopus horrens as a new source for angiotensin-converting enzyme inhibitory peptides. Evidence-Based Complementary and Alternative Medicine 2012: 1-9.

Franco-Miranda, H., Chel-Guerrero, L., Gallegos-Tintoré, S., Castellanos-Ruelas, A. & Betancur-Ancona, D. 2017. Physicochemical, rheological, bioactive and consumer acceptance analyses of concha-type Mexican sweet bread containing lima bean or cowpea hydrolysates. LWT - Food Science and Technology 80: 250-256.

Ghanbari, R., Zarei, M., Ebrahimpour, A. & Abdul-Hamid, A. 2015. Angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidant activities of sea cucumber (Actinopyga lecanora) hydrolysates. International Journal of Molecular Sciences 16: 28870-28885.

Ghassem, M., Babji, A.S., Said, M., Mahmoodani, F. & Arihara, K. 2014. Angiotensin I-converting enzyme inhibitory peptides from snakehead fish sarcoplasmic protein hydrolysate. Journal of Food Biochemistry 38: 140-149.

Huang, G.R., Zhao, J. & Jiang, J.X. 2011. Effect of defatting and enzyme type on antioxidative activity of shrimp processing by products hydrolysate. Food Science and Biotechnology 20(3): 651-657.

Jai Ganesh, R., Nazeer, R.A. & Sampath Kumar, N.S. 2011. Purification and identification of antioxidant peptide from black pomfret, Parastromateus niger (Bloch, 1975) viscera protein hydrolysate. Food Science and Biotechnology 20(4): 1087-1094.

Je, J.Y., Qian, Z.J., Byun, H.G. & Kim, S.K. 2007. Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochemistry 42: 840-846.

Jumeri & Kim, S.M. 2011. Antioxidant and anticancer activities of enzymatic hydrolysates of solitary tunicate (Styela clava). Food Science and Biotechnology 20(4): 1075-1085.

Kawasaki, T., Seki, E., Osajima, K., Yoshida, M., Asada, K., Matsui, T. & Osajima, Y. 2000. Antihypertensive effect of valyl-tyrosine, a short chain peptide derived from sardine muscle hydrolyzate, on mild hypertensive subjects. Journal of Human Hypertension 14(8): 519-523.

Kim, S. & Wijesekara, I. 2012. Industry perspectives and commercial trends for food proteins and biopeptides. In Food Proteins and Peptides: Chemistry, Functionality, Interactions, and Commercialization, edited by Hettiarachchy, N.S. Boca Raton: Taylor & Francis Group. pp. 409-420.

Klompong, V., Benjakul, S., Kantachote, D. & Shahidi, F. 2007. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chemistry 102(4): 1317-1327.

Ktari, N., Jridi, M., Bkhairia, I., Sayari, N., Ben Salah, R. & Nasri, M. 2012. Functionalities and antioxidant properties of protein hydrolysates from muscle of zebra blenny (Salaria basilisca) obtained with different crude protease extracts. Food Research International 49: 747-756.

Li, X., Shen, S., Deng, J., Li, T. & Ding, C. 2014. Antioxidant activities and functional properties of tea seed protein hydrolysates (Camellia oleifera Abel.) influenced by the degree of enzymatic hydrolysis. Food Science and Biotechnology 23(6): 2075-2082.

Miguel, M., Recio, I., Gomez-Ruiz, J., Ramos, M. & Lopez-Fandino, R. 2004. Angiotensin I-converting enzyme inhibitory activity of peptides derived from egg white proteins by enzymatic hydrolysis. Journal of Food Protection 7(9): 1914-1920.

Mirzaei, M., Mirdamadi, S., Ehsani, M.R., Aminlari, M. & Hosseini, E. 2015. Purification and identification of antioxidant and ACE-inhibitory peptide from Saccharomyces cerevisiae protein hydrolysate. Journal of Functional Foods 19: 259-268.

Najafian, L. & Babji, A.S. 2014. Production of bioactive peptides using enzymatic hydrolysis and identification antioxidative peptides from patin (Pangasius sutchi) sarcoplasmic protein hydolysate. Journal of Functional Foods 9: 280-289.

Naqash, S.Y. & Nazeer, R.A. 2011. Evaluation of bioactive properties of peptide isolated from Exocoetus volitans backbone. International Journal of Food Science and Technology 46: 37-43.

Nasri, R., Jridi, M., Lassoued, I., Jemil, I., Ben Slama-Ben Salem, R., Nasri, M. & Karra-Châabouni, M. 2014. The influence of the extent of enzymatic hydrolysis on antioxidative properties and ACE-inhibitory activities of protein hydrolysates from goby (Zosterisessor ophiocephalus) muscle. Applied Biochemistry and Biotechnology 173(5): 1121-1134.

Nielsen, P.M., Petersen, D. & Dambmann, C. 2001. Improved method for determining food protein degree of hydrolysis. Journal of Food Science 66(5): 642-646.

Qian, Z.J., Je, J.Y. & Kim, S.K. 2007. Antihypertensive effect of angiotensin I converting enzyme-inhibitory peptide from hydrolysates of bigeye tuna dark muscle, Thunnus obesus. Journal of Agricultural and Food Chemistry 55: 8398-8403.

Sun, Y., Hayakawa, S., Ogawa, M., Naknukool, S., Guan, Y. & Matsumoto, Y. 2011. Evaluation of angiotensin I-converting enzyme (ACE) inhibitory activities of hydrolysates generated from byproducts of freshwater clam. Food Science and Biotechnology 20(2): 303-310.

Syarmila, E. & Aliah, N. 2016. Effect of enzymatic hydrolysis on angiotensin converting enzyme (ACE) inhibitory activity in swiftlet saliva. International Food Research Journal 23(1): 141-146.

World Health Organization (WHO). 2013. A Global Brief on Hypertension. Geneva: World Health Organization. pp. 1-40.

Yang, X.R., Zhao, Y.Q., Qiu, Y.T., Chi, C.F. & Wang, B. 2019. Preparation and characterization of gelatin and antioxidant peptides from gelatin hydrolysate of skipjack tuna (Katsuwonus pelamis) bone. Marine Drug 17(78): 1-18.  

Zakaria, N.A. & Sarbon, N.M. 2018. Physicochemical properties and oxidative stability of fish emulsion sausage as influenced by snakehead (Channa striata) protein hydrolysate. LWT - Food Science and Technology 94: 13-19.

Zhong, S.Y., Ma, C.W., Lin, Y.C. & Luo, Y.K. 2011. Antioxidant properties of peptide fractions from silver carp (Hypophthalmichthys molitrix) processing by-product protein hydrolysates evaluated by electron spin resonance spectrometry. Food Chemistry 126: 1636-1642. 

Zuraini, A., Somchit, M.N., Solihah, M.H., Goh, Y.M., Arifah, A.K., Zakaria, M.S., Somchit, M., Rajion, M.A., Zakaria, Z.A. & Mat Jais, A.M. 2006. Fatty acid and amino acid composition of three local Malaysian Channa spp. fish. Food Chemistry 97: 674-678.

 

*Corresponding author; email: jslee@ums.edu.my

 

 

 

previous