Sains Malaysiana 49(2)(2020):
261-270
http://dx.doi.org/10.17576/jsm-2020-4902-04
ACE-Inhibitory and Antioxidant Activities of Hydrolysates from the By-Products of Hybrid Grouper (Epinephelus lanceolatus × Epinephelus fuscoguttatus)
(Aktiviti Perencantan-ACE dan Antioksidan Hidrolisat daripada Hasil Sampingan Ikan Kerapu Kacukan (Epinephelus
lanceolatus × Epinephelus fuscoguttatus))
PEI-TENG, CHAN1,
PATRICIA MATANJUN1, CAHYO BUDIMAN2, ROSSITA SHAPAWI3 & JAU-SHYA, LEE1*
1Faculty of Food Science and Nutrition, Universiti
Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
2Biotechnology Research Institute, Universiti
Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
3Borneo Marine Research Institute, Universiti
Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
Received: 21 March 2019/Accepted: 29 October 2019
ABSTRACT
Protein
hydrolysates, generated from the by-products of fish, have received much
attention over recent years, due to their antihypertensive and antioxidant
activities. The potency of bioactive peptides, however, is affected by the type
of enzyme selected and the duration of hydrolysis required to generate the
protein hydrolysate. This study was aimed to
investigate the effects of using four different enzymes (Alcalase, Proteinase
K, Trypsin, and Pepsin) and hydrolysis time (1 - 48 h), on the
ACE-inhibitory and antioxidant activities (hydroxyl radical scavenging activity
and reducing power), of protein hydrolysates from the head and bones of hybrid grouper (Epinephelus lanceolatus × Epinephelus fuscoguttatus). Among the enzymes
tested, Alcalase was the most effective enzyme hydrolysing
the by-product of hybrid grouper, followed by Proteinase K, Trypsin, and Pepsin
(p < 0.05). According
to the results attained, enzyme with the higher degree of hydrolysis exhibited
higher antioxidant activities, but not ACE-inhibitory activity. This indicates
that the ACE-inhibition potency of hydrolysate, from the by-product of hybrid
grouper, is very much dependent on the type of enzyme, and the treatment
duration during hydrolysis. The ACE-inhibitory
activity of Alcalase and Trypsin hydrolysates was found to decrease in tandem
with the increase in hydrolysis time. On the other hand, a longer hydrolysis
time resulted in a higher ACE-inhibitory activity for Proteinase K and Pepsin
hydrolysate (p < 0.05). The results attained suggest that the selection of
an appropriate enzyme, together with an effective hydrolysis time, can enhance
the bioactivities of the hydrolysate obtained from the by-product of hybrid
grouper.
Keywords: ACE-inhibitory activity; Alcalase; Pepsin; Proteinase K;
Trypsin
ABSTRAK
Kebelakangan
ini, hidrolisat protein yang dihasilkan daripada bahan sampingan ikan telah
mendapat banyak tumpuan disebabkan keupayaannya menunjukkan aktiviti
antihipertensi dan antiosidan. Potensi bioaktif peptida bagaimanapun
dipengaruhi oleh jenis enzim dan tempoh hidrolisis yang digunakan untuk
menghasilkan hidrolisat protein. Kajian ini bertujuan untuk mengkaji kesan enzim
(Alkalase, Proteinase K, Tripsin, dan Pepsin) dan masa hidrolisis (1 - 48 jam) yang berbeza
terhadap aktiviti perencatan-ACE dan antioksidan (aktiviti pemerangkapan
radikal hidroksil dan kuasa penurunan) hidrolisat yang dihasilkan daripada
kepala dan tulang ikan kerapu kacukan (Epinephelus
lanceolatus × Epinephelus fuscoguttatus). Antara enzim yang digunakan,
Alkalase merupakan enzim yang paling berkesan untuk menghidrolisiskan hasil
sampingan ikan kerapu kacukan, diikuti dengan Proteinase K, Tripsin dan Pepsin
(p < 0.05). Berdasarkan hasil kajian yang diperoleh, enzim dengan darjah
hidrolisis yang tinggi merekodkan aktiviti antioksidan yang tinggi tetapi
tidak dengan aktiviti perencatan-ACE. Ini menunjukkan potensi aktiviti
perencatan-ACE hidrolisat daripada hasil sampingan ikan kerapu kacukan amat
bergantung kepada jenis enzim dan masa rawatan sewaktu hidrolisis. Aktiviti
perencantan-ACE bagi hidrolisat Alkalase dan Tripsin didapati menurun dengan
peningkatan masa hidrolisis. Sebaliknya, masa hidrolisis yang panjang
mengakibatkan aktiviti perencatan-ACE yang lebih tinggi bagi hidrolisat
Proteinase K dan Pepsin (p < 0.05). Hasil keputusan kajian ini mencadangkan
bahawa pemilihan enzim yang betul digabungkan dengan masa hidrolisis yang
berkesan dapat menambahbaikan bioaktiviti hidrolisat yang diperoleh daripada
hasil sampingan ikan kerapu kacukan.
Kata kunci:
Aktiviti perencantan-ACE; Alkalase; Pepsin; Proteinase K; Tripsin
REFERENCES
Adler-Nissen, J. 1993. Proteases. In Enzymes
in Food Processing, edited by Nagodawithana, T. & Reed, G. 3rd ed. San
Diego: Academic Press Inc. pp. 167-199.
Aluko, R.E. 2012. Bioactive peptides. In Functional Foods and Nutraceuticals, edited by Aluko, R.E. New
York: Springer-Verlag. pp. 37-61.
Ambigaipalan, P. & Shahidi, F. 2015. Date seed
flour and hydrolysates affect physicochemical properties of muffin. Food Bioscience 12: 54-60.
Barzideh, Z., Latiff, A.A., Gan, C. & Alias, A.K. 2014. ACE
inhibitory and antioxidant activities of collagen hydrolysates from the ribbon
jellyfish (Chrysaora sp.). Food Technology and Biotechnology 52(4):
495-504.
Byun, H.G. & Kim, S.K. 2001. Purification and characterization of
angiotensin I converting enzyme (ACE) inhibitory peptides from Alaska pollack (Theragra chalcogramma) skin. Process Biochemistry 36(12): 1155-1162.
Chalamaiah, M., Dinesh Kumar, B., Hemalatha, R. & Jyothirmayi, T.
2012. Fish protein hydrolysates: Proximate composition, amino acid composition,
antioxidant activities and applications: A review. Food Chemistry 135: 3020-3038.
Choonpicharn, S., Jaturasitha, S., Rakariyatham, N., Suree, N. &
Niamsup, H. 2014. Antioxidant and antihypertensive activity of gelatin
hydrolysate from Nile tilapia skin. Journal
of Food Science and Technology 52: 3134-3139.
Chi, C.F., Wang, B., Wang, Y.M., Zhang, B. & Deng, S.G. 2015.
Isolation and characterization of three antioxidant peptides from protein
hydrolysate of Bluefin leatherjacket (Navodon
septentrionalis) heads. Journal of
Functional Foods 12: 1-10.
Coggins, P.C. & Chamul, R.S. 2006. Food sensory attributes. In Handbook of Food Science, Technology, and
Engineering, edited by Hui, Y.H. Boca Raton: CRC Press. pp. 58-26-58-31.
De, M., Mazlan, A.G. & Simon, K.D. 2014. Temperature effect on
gastric emptying time of hybrid grouper (Epinephelus spp.). AIP Conference Proceedings 1614: 616-618.
Ennaas, N., Hammami, R., Beaulieu, L. & Fliss, I. 2015. Purification
and characterization of four antibacterial peptides from protamex hydrolysate
of Atlantic mackerel (Scomber scombrus)
by-products. Biochemical and Biophysical
Research Communications 462(3): 195-200.
Firdaus, R.F., Lim, L.S., Kawamura, G. & Shapawi, R. 2016.
Assessment on the acceptability of hybrid grouper, Epinephelus fuscoguttatus ♀× Epinephelus lanceolatus to soybean meal-based diets. AACL Bioflux 9(2): 284-290.
Forghani, B., Ebrahimpour, A., Bakar, J., Abdul Hamid, A., Hassan, Z.
& Saari, N. 2012. Enzyme hydrolysates from Stichopus horrens as a new source for angiotensin-converting enzyme inhibitory peptides. Evidence-Based Complementary and Alternative
Medicine 2012: 1-9.
Franco-Miranda, H., Chel-Guerrero, L.,
Gallegos-Tintoré, S., Castellanos-Ruelas, A. & Betancur-Ancona, D. 2017.
Physicochemical, rheological, bioactive and consumer acceptance analyses of concha-type Mexican sweet bread
containing lima bean
or cowpea hydrolysates. LWT - Food
Science and Technology 80: 250-256.
Ghanbari, R., Zarei, M., Ebrahimpour, A. & Abdul-Hamid, A. 2015.
Angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidant activities of
sea cucumber (Actinopyga lecanora)
hydrolysates. International Journal of
Molecular Sciences 16: 28870-28885.
Ghassem, M., Babji, A.S., Said, M., Mahmoodani, F. & Arihara, K.
2014. Angiotensin I-converting enzyme inhibitory peptides from snakehead fish
sarcoplasmic protein hydrolysate. Journal
of Food Biochemistry 38: 140-149.
Huang, G.R., Zhao, J. & Jiang, J.X. 2011. Effect of defatting and
enzyme type on antioxidative activity of shrimp processing by products
hydrolysate. Food Science and
Biotechnology 20(3): 651-657.
Jai Ganesh, R., Nazeer, R.A. & Sampath Kumar, N.S. 2011.
Purification and identification of antioxidant peptide from black pomfret, Parastromateus niger (Bloch, 1975)
viscera protein hydrolysate. Food Science
and Biotechnology 20(4): 1087-1094.
Je, J.Y., Qian, Z.J., Byun, H.G. & Kim, S.K. 2007. Purification and
characterization of an antioxidant peptide obtained from tuna backbone protein
by enzymatic hydrolysis. Process
Biochemistry 42: 840-846.
Jumeri & Kim, S.M. 2011. Antioxidant and
anticancer activities of enzymatic hydrolysates of solitary tunicate (Styela clava). Food Science and Biotechnology 20(4):
1075-1085.
Kawasaki, T., Seki, E., Osajima, K., Yoshida, M., Asada, K., Matsui, T.
& Osajima, Y. 2000. Antihypertensive effect of valyl-tyrosine, a short
chain peptide derived from sardine muscle hydrolyzate, on mild hypertensive
subjects. Journal of Human Hypertension 14(8): 519-523.
Kim, S. & Wijesekara, I. 2012. Industry perspectives and commercial
trends for food proteins and biopeptides. In Food Proteins and Peptides: Chemistry, Functionality, Interactions, and
Commercialization, edited by Hettiarachchy, N.S. Boca Raton: Taylor &
Francis Group. pp. 409-420.
Klompong, V., Benjakul, S., Kantachote, D. & Shahidi, F. 2007.
Antioxidative activity and functional properties of protein hydrolysate of
yellow stripe trevally (Selaroides
leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chemistry 102(4): 1317-1327.
Ktari, N., Jridi, M., Bkhairia, I., Sayari, N., Ben Salah, R. &
Nasri, M. 2012. Functionalities and antioxidant properties of protein
hydrolysates from muscle of zebra blenny (Salaria
basilisca) obtained with different crude protease extracts. Food Research International 49: 747-756.
Li, X., Shen, S., Deng, J., Li, T. & Ding, C. 2014. Antioxidant
activities and functional properties of tea seed protein hydrolysates (Camellia oleifera Abel.) influenced by
the degree of enzymatic hydrolysis. Food
Science and Biotechnology 23(6): 2075-2082.
Miguel, M., Recio, I., Gomez-Ruiz, J., Ramos, M. & Lopez-Fandino, R.
2004. Angiotensin I-converting enzyme inhibitory activity of peptides derived
from egg white proteins by enzymatic hydrolysis. Journal of Food Protection 7(9): 1914-1920.
Mirzaei, M., Mirdamadi, S., Ehsani, M.R., Aminlari, M. & Hosseini,
E. 2015. Purification and identification of antioxidant and ACE-inhibitory
peptide from Saccharomyces cerevisiae protein hydrolysate. Journal of
Functional Foods 19: 259-268.
Najafian, L. & Babji, A.S. 2014. Production of bioactive peptides
using enzymatic hydrolysis and identification antioxidative peptides from patin
(Pangasius sutchi) sarcoplasmic
protein hydolysate. Journal of Functional
Foods 9: 280-289.
Naqash, S.Y. & Nazeer, R.A. 2011. Evaluation of bioactive properties
of peptide isolated from Exocoetus
volitans backbone. International
Journal of Food Science and Technology 46: 37-43.
Nasri, R., Jridi, M., Lassoued, I., Jemil, I., Ben Slama-Ben Salem, R.,
Nasri, M. & Karra-Châabouni, M. 2014. The influence of the extent of
enzymatic hydrolysis on antioxidative properties and ACE-inhibitory activities
of protein hydrolysates from goby (Zosterisessor
ophiocephalus) muscle. Applied
Biochemistry and Biotechnology 173(5): 1121-1134.
Nielsen, P.M., Petersen, D. & Dambmann, C. 2001. Improved method for
determining food protein degree of hydrolysis. Journal of Food Science 66(5): 642-646.
Qian, Z.J., Je, J.Y. & Kim, S.K. 2007. Antihypertensive effect of
angiotensin I converting enzyme-inhibitory peptide from hydrolysates of bigeye
tuna dark muscle, Thunnus obesus. Journal of Agricultural and Food Chemistry 55: 8398-8403.
Sun, Y., Hayakawa, S., Ogawa, M., Naknukool, S., Guan, Y. &
Matsumoto, Y. 2011. Evaluation of angiotensin I-converting enzyme (ACE)
inhibitory activities of hydrolysates generated from byproducts of freshwater
clam. Food Science and Biotechnology 20(2): 303-310.
Syarmila, E. & Aliah, N. 2016. Effect of enzymatic hydrolysis on
angiotensin converting enzyme (ACE) inhibitory activity in swiftlet saliva. International Food Research Journal 23(1): 141-146.
World Health Organization (WHO). 2013. A Global Brief on Hypertension. Geneva: World Health Organization. pp. 1-40.
Yang, X.R., Zhao, Y.Q., Qiu, Y.T., Chi, C.F. & Wang, B. 2019.
Preparation and characterization of gelatin and antioxidant peptides from
gelatin hydrolysate of skipjack tuna (Katsuwonus
pelamis) bone. Marine Drug 17(78): 1-18.
Zakaria, N.A. & Sarbon, N.M. 2018.
Physicochemical properties and oxidative stability of fish emulsion sausage as
influenced by snakehead (Channa striata) protein hydrolysate. LWT - Food Science and Technology 94:
13-19.
Zhong, S.Y., Ma, C.W., Lin, Y.C. & Luo, Y.K. 2011. Antioxidant
properties of peptide fractions from silver carp (Hypophthalmichthys molitrix) processing by-product protein
hydrolysates evaluated by electron spin resonance spectrometry. Food Chemistry 126: 1636-1642.
Zuraini, A., Somchit, M.N., Solihah, M.H., Goh, Y.M., Arifah, A.K.,
Zakaria, M.S., Somchit, M., Rajion, M.A., Zakaria, Z.A. & Mat Jais, A.M.
2006. Fatty acid and amino acid composition of three local Malaysian Channa spp. fish. Food Chemistry 97: 674-678.
*Corresponding author; email: jslee@ums.edu.my
|