Sains Malaysiana 49(2)(2020): 315-322
http://dx.doi.org/10.17576/jsm-2020-4902-09
Synthesis of Cinnamamide
Derivatives and Their α-Glucosidase Inhibitory Activities
(Sintesis Terbitan Sinamamida
dan Aktiviti Rencatan α-Glucosidase)
TENI ERNAWATI1*,
ABDUL MUN'IM2, MUHAMAD HANAFI1 & ARRY
YANUAR2
1Research Center for Chemistry, Indonesian Institute of Sciences (LIPI),
Kawasan Puspiptek, Serpong Tangerang Selatan, Banten 15314, Indonesia
2Faculty of Pharmacy, Universitas Indonesia, Depok 16242, Indonesia
Received: 5 September 2019/Accepted: 7 November 2019
ABSTRACT
Chemically,
methyl trans-cinnamate offers treatment at the three main reactive sites such
as substitution at the phenyl ring, addition at the α,β-unsaturation,
and substitution at the carboxylic methyl ester functionality. We focus our
research to the amide and related derivatives of cinnamates because of their
lesser known attributes towards antidiabetic activities. In this research, we
modify methyl trans-cinnamate by amidating the carboxylic methyl ester
functionality using several amines introduced in functional groups of methyl
trans-cinnamate. A series of cinnamamide derivatives was synthesized and
evaluated for α-glucosidase inhibitory effects. The structure of
synthesized compounds was characterized by IR, melting point, UV, 1H
NMR, 13C NMR, and mass spectral analysis. All 13 cinnamamide showed
higher α-glucosidase activity than the starting compound. The substitution
of cinnamic acid with an amide group altered the α-glucosidase inhibitory activity. Increased
bulkiness and the chain length of the amine substituents decreased the
inhibitory activity. Propylcinnamamide (3c) showed the most potent inhibitory activity among all the
cinnamamide derivatives, all of which act through a competitive inhibitory
mechanism. These compounds may be worth exploring further.
Keywords:
α-glucosidase inhibitor; cinnamamide derivative; synthesis
ABSTRAK
Secara
kimia, metil trans-sinamat menawarkan rawatan pada tiga tapak reaktif utama
seperti penggantian pada gelang fenil, penambahan pada ketaktepuan
α,β dan penggantian pada kefungsian karbosilik metil ester. Kami
memfokuskan kajian ini kepada amida dan terbitan berkaitan sinamat kerana
atribut yang kurang dikenali terhadap aktiviti antidiabetis. Dalam kajian ini
kami mengubah suai metil trans-sinamat dengan keamidaan kefungsian karbosilik
metil ester menggunakan beberapa amina yang diperkenalkan dalam kumpulan
fungsian metil trans-sinamat. Beberapa terbitan sinamamida telah disintesis dan
dinilai untuk kesan rencatan α-glucosidase. Struktur sintesis sebatian
telah dicirikan oleh IR, titik lebur, UV, 1H NMR, 13C NMR
dan analisis jisim spektrum. Kesemua 13 sinamamida menunjukkan aktiviti
α-glucosidase yang tinggi berbanding sebatian pemula. Penggantian asid
sinamik dengan kumpulan amida mengubah aktiviti perencatan α-glucosidase. Peningkatan
berpukal dan panjang rantai bahan ganti amina mengurangkan aktiviti rencatan. Propilsinamamida
(3c) menunjukkan aktiviti rencatan
poten dalam kalangan terbitan sinamamida, dengan kesemuanya bertindak melalui
mekanisme perencatan berpersaingan. Sebatian ini mungkin berbaloi untuk kajian
lanjut.
Kata
kunci: Perencat α-glucosidase; sintesis; terbitan sinamamida
References
Adisakwattana, S., Charoenlertkul, P. & Yibchok-anun, S. 2009.
α-Glucosisade inhibitory activity of cyaniding-3-galactoside and
synergitic effect with acarbose. Journal
of Enzyme Inhibition and Medicinal Chemistry 24: 65-69.
Adisakwattana, S., Sookkongwaree, K., Roengsumran, S., Petsom, A.,
Ngamrojnavanich, N., Chavasiri, W. & Yibchok-Anun, S.D. 2004. Structure
activity relationships of trans-cinnamic acid derivatives on α-glucosidase
inhibition. Bioorg. Med. Chem. Lett. 14: 2893-2894.
Babu,
P.S., Prabuseenivasan, S. & Ignacimuthu, S. 2007. Cinnamaldehyde a
potential antidiabetic agent. Phytomedicine 14: 15-20.
Bösenberg,
L.H. & van Zyl, D.G. 2008. The mechanism of action of oral antidiabetic drugs: A review of
recent literature. Endocr. Metab. Diab. South Afr. 13(3): 80-88.
Carvalho,
S.A., Silva, E.F., Souza, M.V.N., Lourenc, M.C.S. & Vicente, F.R. 2008.
Synthesis and antimycobacterial evaluation of new trans-cinnamic acid hydrazide
derivatives. Bioorg. Med. Chem. Lett. 18: 538-544.
Davies,
G. & Henrissat, B. 1995. Structures and mechanisms of glycosyl hydrolases. Structure 3: 853-858.
Fischer,
P.B., Collin, M., Karlsson, G.B., James, W., Butters, T.D., Davis, S.J. &
Platt, F.M. 1995. The α-glucosidase inhibitor N-Butyldeoxynojirimycin
inhibits human immunodeficiency virus entry at the level of post-CD4
binding. J. Virol. 69: 5791-5796.
Huang, D.W., Shen, S.C. & Wu, J.S.B. 2009. Effects of caffeic acid
and cinnamic acid on glucose uptake in insulin-resistant mouse hepatocytes. J. Agric. Food Chem. 57: 7687-7692.
Hurth,
K., Jacquier, S., Lehmann, H. & Wilcken, R. 2015. Regioselective nitration
of 3-fluoro-2-substituted benzoic acids. Tetrahedron Lett. 56: 2860-2860.
Kim,
Y.M., Wang, M.H. & Rhee, H.I. 2004. A novel alpha-glucosidase inhibitor
from pine bark. Carbohydr. Res. 339: 715-720.
Liu,
Y., Zou, L., Ma, L., Chen, W.H., Wang, B. & Xu, Z.L. 2006. Synthesis and
pharmacologies activies xanthone derivatives as alpha glucosidase inhibitors. Bioorg.
Med. Chem. 14: 5683-5688.
Lu,
Y., Li, Y., Zhang, R., Jin, K. & Duan, C. 2013. Regioselective
ortho-nitration of N -phenyl
carboxamides and primary anilines using bismuth nitrate/acetic anhydride. Tetrahedron 69: 9422-9426.
Matsuura,
H., Miyazaki, H. & Asakawa, C. 2004. Isolation of α-glusosidase
inhibitors from hyssop (Hyssopus
officinalis). Phytochemistry 65: 91-95.
Mehta, A., Zitzmann, N., Rudd, P.M. & Block, T.M. 1998. α-Glucosidase inhibitors as potential broad based anti-viral agents. FEBS Lett. 430: 17-20.
Melo,
E.B. & Carvalho, I. 2006. α- and β-glucosidase inhibitors:
Chemical structure and biological activity. Tetrahedron 62: 10277-10280.
Mohammed,
K., Rahim, F., Wadood, A., Kosar, N., Taha, M., Lalani, S. & Perveen, S.
2014. Synthesis and molecular docking studies of potent α-glucosidase
inhibitors based on biscoumarin skeleton. Eur. J. Med. Chem. 81: 245-250.
Montalbetti, C.A. & Falque, V. 2005. Amide bond formation and
peptide coupling. Tetrahedron 61: 10827-10832.
Murray, K., Granner, D.K., Mayes, P. & Rodwell, V. 2003. Harper's Illustrated Biochemistry. 26th ed. Longe Medical
Pub.
Narender,
T., Shweta, S., Tiwari, P., Reddy, K.P., Khaliq, T., Prathipati, P. & Raj,
K. 2007. Antihyperglycemic and antidyslipidemic agent from Aegle marmelos. Bioorg. Med. Chem. Lett. 17: 1808-1814.
Oxley,
J.C., Smith, J.L., Moran, J.S., Canino, J.N. & Almog, J. 2008. Aromatic
nitration using nitroguanidine and EGDN. Tetrahedron Lett. 49: 4449-4454.
Park, J.E., So, H.P.,
Jung, Y.W., Hye, S.H.,
Jaeho, C. & Heeseob, L.
2013. Enzymatic properties of a thermostable
α-glucosidase from acidothermophilic crenarchaeon Sulfolobus tokodaii Strain 7. J. Microbiol. Biotechnol.
23(1): 56-63.
Park,
H., Hwang, K.Y., Oh, H., Kim, H., Yeon, J. & Kim, K. 2008a. Discovery of
novel α-glucosidase inhibitors based on the virtual screening with the
homology-modeled protein structure. Bioorg. Med. Chem. 16: 284-286.
Park,
J., Ko, S. & Park, H. 2008b. Toward the virtual screening of
α-glucosidase inhibitors with the homology-modeled protein structure. Bull. Korean Chem. Soc. 29: 921-925.
Phuwapraisirisan,
P., Puksasook, T., Jong-aramruang, J. & Kokpol, U. 2008. Phenylethyl
cinnamides: A new series of α -glucosidase inhibitors from the leaves of Aegle marmelos. Bioorg. Med. Chem. Lett. 18: 4956-4960.
Pili,
R., Chang, J.A., Partis, R.A., Mueller, R.J., Chrest, F. & Passaniti, A.
1995. The alpha-glucosidase I inhibitor castanospermine alters endothelial cell
glycosylation, prevents angiogenesis, and inhibits tumor growth. Cancer Res. 55: 2920-2926.
Rodrigues,
J.A.R., de Oliveira Filho, A.P., Moran, P.J.S. & Custódio, R. 1999.
Regioselectivity of the nitration of phenol by acetyl nitrate adsorbed on
silica gel. Tetrahedron. 55(22): 6733-6738.
Van
de Laar, F.A. 2008. α-Glucosidase inhibitors in the early
treatment of Type 2 diabetes. Health Risk Manag. 4: 1189-1195.
*Corresponding author; email: teni.ernawati.lipi@gmail.com
|