Sains
Malaysiana 49(2)(2020): 323-333
http://dx.doi.org/10.17576/jsm-2020-4902-10
Physicochemical and Thermal
Characterization of Hydroxyethyl Cellulose - Wheat Starch Based Films
Incorporated Thymol Intended for Active Packaging
(Fizikokimia
dan Pencirian Haba Hidroksietil Selulosa -
Kanji Gandum berasaskan Filem Gabungan Timol Bertujuan untuk Pembungkusan Aktif)
NOZIEANA
KHAIRUDDIN1*, IDA IDAYU MUHAMAD2, WAN AIZAN WAN ABD
RAHMAN2 & BAZLUL MOBIN SIDDIQUE3
1Department
of Basic Science and Engineering, Faculty of Agriculture and Food
Sciences, Universiti Putra Malaysia Bintulu Sarawak Campus, P.O.
Box 396, Nyabau Road, 97008 Bintulu, Sarawak, Malaysia
2Department
of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering,
Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru,
Johor Darul Takzim, Malaysia
3School of Engineering,
Swinburne University of Technology Sarawak Campus, 93350 Kuching,
Sarawak, Malaysia
Diserahkan:
8 April 2019/Diterima: 10 November 2019
ABSTRACT
Biodegradable packing materials with
antimicrobial properties have been a concern for years because of its positive
environmental implications. The present work aimed to develop the formulation
of hydroxyethyl cellulose (HEC)/wheat-starch based film in which the active
compound, thymol (0.5, 1, 1.5, 2, and 2.5% w/w) were incorporated into the
polymeric material. Solution casting
method was used for the film preparation while thymol was incorporated prior to
casting. The physical and chemical properties of the developed film were
determined. SEM was found to have a smooth and homogeneous with a small amount
of thymol which grows coarser with 1.5% or higher thymol content. FTIR was used
to find the chemical property of the film and suggested that the carbonyl
functional group was unchanged in the film, however, -OH groups increased
substantially with increased amount of thymol. Thermal properties were profiled
through thermogravimetric analysis and differential scanning calorimeter where
the AM film containing 1.5% (w/v) of thymol shows the highest thermal stability
and decomposes less in comparison to other samples. The inhibitory capability
of the film was tested against a list of microbial contamination and was found
to successfully inhibit the growth of selected gram positive and gram negative
bacteria in a wide range of studied concentration. The mechanical properties of
the films were improved by 60.3% with an optimum tensile strength at thymol
concentration of 1.5% w/w. It can be
concluded that the film properties are retained chemically whereas mechanical
properties, strength, flexibility and function of the film are being enhanced
remarkably by the incorporation of thymol.
Keywords: Active packaging; hydroxyethyl
cellulose; thymol; wheat based film
ABSTRAK
Bahan pembungkusan biodegradasi dengan sifat
antimikrob telah menjadi kebimbangan selama ini kerana implikasinya terhadap
alam sekitar. Kertas ini bertujuan untuk membangunkan formulasi hidroksietil selulosa (HEC)/kanji-gandum
berasaskan filem dengan sebatian aktif timol (0.5, 1, 1.5, 2 dan 2.5% w/w)
digabungkan ke dalam bahan polimer. Kaedah larutan tuangan telah digunakan
untuk penyediaan filem manakala timol telah digabungkan sebelum tuangan. Sifat
fizikal dan kimia filem yang dibangunkan telah ditentukan. SEM yang diperoleh
adalah licin dan homogen dengan sedikit timol telah menjadi kasar dengan 1.5%
atau lebih tinggi kandungan timol. FTIR telah digunakan untuk mencari sifat
kimia filem dan mencadangkan bahawa kumpulan fungsian karbonil tidak berubah
dalam filem, walau bagaimanapun, kumpulan -OH meningkat dengan ketara dengan
peningkatan jumlah timol. Sifat terma telah diprofil melalui analisis termogravimetri dan pengimbasan pembezaan kalorimeter dengan filem AM yang mengandungi 1.5%
(w/v) timol menunjukkan kestabilan haba tertinggi dan reput yang kurang
berbanding sampel lain. Keupayaan rencatan filem telah diuji terhadap satu
senarai pencemaran mikrob dan didapati berjaya merencat pertumbuhan bakteria
gram positif dan gram negatif terpilih dalam pelbagai kepekatan. Sifat mekanik
filem ini telah bertambah baik sebanyak 60.3% dengan kekuatan tegangan optimum
pada 1.5% w/w kepekatan timol. Boleh disimpulkan bahawa sifat kimia filem
dikekalkan manakala sifat mekanik, kekuatan, kefleksibelan dan fungsi filem
telah ditingkatkan dengan begitu baik dengan gabungan timol.
Kata kunci: Gandum
berasaskan filem; hidroksietil selulosa; pembungkusan aktif; timol
RUJUKAN
Abreu, A.S., Oliveira, M., de Sá,
A., Rodrigues, R.M., Cerqueira, M.A., Vicente, A.A. & Machado,
A.V. 2015. Antimicrobial nanostructured starch based films for packaging.
Carbohydrate Polymers 129: 127-134.
Appendini, P. & Hotchkiss, J.H.
2001. Surface modification of poly(styrene) by the attachment of an
antimicrobial peptide. Journal of Applied Polymer Science 81(3):
609-616.
Arras, G. & Usai, M. 2001.
Fungitoxic activity of 12 essential oils against four postharvest citrus
pathogens: Chemical analysis of thymus capitatus oil and its effect in
subatmospheric pressure conditions. Journal of Food Protection 64(7):
1025-1029.
Avella, M., De Vlieger, J.J.,
Errico, M.E., Fischer, S., Vacca, P. & Volpe, M.G. 2005. Biodegradable
starch/clay nanocomposite films for food packaging applications. Food
Chemistry 93(3): 467-474.
Ayala-Zavala, J.F., González-Aguilar,
G.A. & Del-Toro-Sánchez, L. 2009. Enhancing safety and
aroma appealing of fresh-cut fruits and vegetables using the antimicrobial
and aromatic power of essential oils. Journal of Food Science
74(7): R84-R91.
Brody, A.L., Strupinsky, E.P. &
Kline, L.R. 2001. Active Packaging for Food Applications. Boca Raton:
CRC Press.
Bulpa, P., Dive, A. & Sibille,
Y. 2007. Invasive pulmonary aspergillosis in patients with chronic obstructive
pulmonary disease. European Respiratory Journal 30(4): 782-800.
Cao, X., Chang, P.R. & Huneault,
M.A. 2008. Preparation and properties of plasticized starch modified with
poly(ε-caprolactone) based waterborne polyurethane. Carbohydrate Polymers 71(1): 119-125.
Cerqueira, M.A., Costa, M.J.,
Fuciños, C., Pastrana, L.M. & Vicente, A.A. 2014. Development of active and
nanotechnology-based smart edible packaging systems: Physical-chemical
characterization. Food and Bioprocess Technology 7(5): 1472-1482.
Chen, J.G., Liu, C.H., Chen, Y.Q.,
Chen, Y. & Chang, P.R. 2008. Structural characterization and properties of
starch/konjac glucomannan blend films. Carbohydrate Polymers 74(4):
946-952.
Dawson, P.L., Acton, J.C., Han,
I.Y., Padgett, T., Orr, R. & Larsen, T. 1996. Incorporation of
antibacterial compounds into edible and biodegradable packaging films. Research
and Development Associates for Military Food and Packaging Systems 48(1):
203-210.
Delgado, B., Fernández, P.S., Palop,
A. & Periago, P.M. 2004. Effect of thymol and cymene on Bacillus cereus vegetative cells
evaluated through the use of frequency distributions. Food Microbiology 21(3): 327-334.
Ettayebi, K., Jamal El, Y. & Badr-Din,
R-H. 2000. Synergistic effects of nisin and thymol on antimicrobial
activities in Listeria monocytogenes and Bacillus subtilis.
FEMS Microbiology Letters 183(1): 191-195.
Famá, L., Flores, S.K., Gerschenson,
L. & Goyanes, S. 2006. Physical characterization of cassava starch biofilms
with special reference to dynamic mechanical properties at low temperatures. Carbohydrate
Polymers 66(1): 8-15.
García, M.A., Pinotti, A., Martino,
M.N. & Zaritzky, N.E. 2009. Characterization of starch and composite edible
films and coatings. Edible Films and Coatings for Food Applications. New
York: Springer-Verlag. pp. 169-209.
Gennadios, A., Weller, C. & Testin,
R.F. 1993. Temperature effect on oxygen permeability of edible protein-based
films. Journal of Food Science 58(1): 212-214.
Gibis, D. & Rieblinger, K. 2011.
Oxygen scavenging films for food application. Procedia Food Science 1:
229-234.
Gniewosz, M. & Synowiec, A.
2011. Antibacterial activity of pullulan films containing thymol. Flavour
and Fragrance Journal 26(6): 389-395.
Han, J.H. 2003. Antimicrobial food
packaging. Novel Food Packaging Techniques 8: 50-70.
Han, J.J. 2006. Antimicrobial
packaging system for optimization of electron beam irradiation of fresh
produce. Thesis PhD. Texas A&M University (Unpublished).
Hasnah Sirat Mohd, Zakaria Bahari,
Muhammad Sum Hj. Idris. & Farediah Ahmed. 2000. Kimia Organik.
Edisi Modu. Johor Bahru.
Helander, I.M., Alakomi, H.L., Latva-Kala,
K., Mattila-Sandholm, T., Pol, I., Smid, E.J., Gorris, L.G.M. &
von Wright, A. 1998. Characterization of the action of selected
essential oil components on gram-negative bacteria. Journal of
Agricultural and Food Chemistry 46(9): 3590-3595.
Karbowiak, T., Debeaufort, F., Champion,
D. & Voilley, A. 2006. Wetting properties at the surface of
iota-carrageenan-based edible films. Journal of Colloid and Interface
Science 294(2): 400-410.
Kittinaovarat, S. & Kantuptim,
P. 2005. Comparative antibacterial properties of glyoxal and glyoxal and
chitosan treated cotton fabrics. AATCC Review 5(4): 22-24.
Kroll, J. & Rawel, H.M. 2001.
Reactions of plant phenols with myoglobin: Influence of chemical structure of
the phenolic compounds. Journal of Food Science 66(1): 48-58.
Kuorwel, K.K. 2011. Incorporation of
natural antimicrobial agents into starch-based material for food packaging. PhD
thesis, Victoria University (Unpublished).
Li, K-K., Yin, S-W., Yang, X-Q.,
Tang, C-H. & Wei, Z-H. 2012. Fabrication and characterization of novel
antimicrobial films derived from thymol-loaded zein-sodium caseinate (SC)
nanoparticles. Journal of Agricultural and Food Chemistry 60(46):
11592-11600.
Liu, Z. & Han, J.H. 2005.
Film‐forming characteristics of starches. Journal of Food Science 70(1): E31-E36.
Malhotra, B., Keshwani, A. &
Kharkwal, Harsha. 2015. Antimicrobial food packaging: Potential and pitfalls. Frontiers
in Microbiology 6: 611.
Mali, S., Grossmann, M.V.E., García,
M.A., Martino, M.N. & Zaritzky, N.E. 2006. Effects of controlled storage on
thermal, mechanical and barrier properties of plasticized films from different
starch sources. Journal of Food Engineering 75(4): 453-460.
Marcos, B., Aymerich, T., Monfort,
J.M. & Garriga, M. 2010. Physical performance of biodegradable films
intended for antimicrobial food packaging. Journal of Food Science 75(8): E502-E507.
Matias, V.R.F. & Beveridge, T.J.
2005. Cryo‐electron microscopy reveals native polymeric cell wall
structure in Bacillus subtilis 168
and the existence of a periplasmic space. Molecular Microbiology 56:
240-251.
Mistry, Y. 2006. Development of
LDPE-based antimicrobial films for food packaging. Master Theses. Packaging and
Polymer Research Unit, School of Molecular Sciences, Faculty of Health,
Engineering and Science, Victoria University (Unpublished).
Moreno, O., Atarés, L. &
Chiralt, A. 2015. Effect of the incorporation of antimicrobial/antioxidant
proteins on the properties of potato starch films. Carbohydrate Polymers 133: 353-364.
Nazzaro, F., Fratianni, F., De
Martino, L., Coppola, R. & De Feo, V. 2013. Effect of essential oils on
pathogenic bacteria. Pharmaceuticals 6(12): 1451-1474.
Nozieana Khairuddin, Ida Idayu
Muhamad, Wan Aizan Wan Abdul Rahman. & Bazlul Mobin Siddique. 2019.
Microbial study of pH sensitive starch based film using agar diffusion method
(zone inhibition assay). IOP Conf. Ser.: Materials Science and Engineering 607: 1-6.
Numpaque, M.A., Oviedo, L.A., Gil,
J.H., García, C.M. & Durango, D.L. 2011. Thymol and carvacrol:
Biotransformation and antifungal activity against the plant pathogenic fungi
colletotrichum acutatum and botryodiplodia theobromae. Tropical Plant
Pathology 36(1): 3-13.
Quijada-Garrido, I., Iglesias-González,
V., Mazon-Arechederra, J.M. & Barrales-Rienda. J.M. 2007. The role played
by the interactions of small molecules with chitosan and their transition
temperatures. Glass-forming liquids: 1, 2, 3-Propantriol (Glycerol). Carbohydrate
Polymers 68(1): 173-186.
Ramos, M., Jiménez, A., Peltzer, M.
& Garrigós, M.C. 2014. Development of novel nano-biocomposite antioxidant
films based on poly (lactic acid) and thymol for active packaging. Food
Chemistry 162: 149-155.
Ramos, M., Jiménez, A., Peltzer, M.
& Garrigós, M.C. 2012. Characterization and antimicrobial activity studies
of polypropylene films with carvacrol and thymol for active packaging. Journal
of Food Engineering 109(3): 513-519.
Rodríguez, M., Oses, J., Ziani
Khalid. & Mate, J.I. 2006. Combined effect of plasticizers and surfactants
on the physical properties of starch based edible films. Food Research
International 39(8): 840-846.
Salarbashi, D., Tajik, S.,
Ghasemlou, M., Shojaee-Aliabadi, S., Shahidi Noghabi, M. & Khaksar, R.
2013. Characterization of soluble soybean polysaccharide film incorporated
essential oil intended for food packaging. Carbohydrate Polymers 98(1):
1127-1136.
Salleh Eraricar, Ida Idayu Muhammad.
& Qadly Ameen Pahlawi. 2014. Spectrum activity and lauric acid release
behaviour of antimicrobial starch-based film. Procedia Chemistry 9:
11-22.
Sánchez-González, L., Vargas, M.,
González-Martínez, C., Chiralt, A. & Cháferl, M. 2009. Characterization of
edible films based on hydroxypropylmethylcellulose and tea tree essential oil. Food
Hydrocolloids 23(8): 2102-2109.
Šegvić Klarić, M., Kosalec,
I., Mastelić, J., Pieckova, E. & Pepeljnak, S. 2007. Antifungal
activity of thyme (Thymus
vulgaris L.) essential oil and thymol against moulds from damp
dwellings. Letters in Applied Microbiology 44(1): 36-42.
Shojaee-Aliabadi, S., Hosseini, H.,
Mohammadifar, M.A., Mohammadi, A., Ghasemlou, M., Hosseini, S.M. & Khaksar,
R. 2014. Characterization of κ-carrageenan films incorporated plant
essential oils with improved antimicrobial activity. Carbohydrate Polymers 101: 582-591.
Sikkema, J., de Bont, J.A. & Poolman,
B. 1995. Mechanisms of membrane toxicity of hydrocarbons. Microbiol.
Mol. Biol. Rev. 59(2): 201-222.
Soares, R.M.D., Lima, A.M.F.,
Oliveira, R.V.B., Pires, A.T.N. & Soldi, V. 2005. Thermal degradation of
biodegradable edible films based on xanthan and starches from different
sources. Polymer Degradation and Stability 90(3): 449-454.
Tippayatum, P. & Chonhenchob, V.
2007. Antibacterial activities of thymol, eugenol and nisin against some food
spoilage bacteria. Nat. Sci. 41: 319-323.
Tiwari, B.K., Valdramidis, V.P.,
O’Donnell, C.P., Kasiviswanathan Muthukumarappan, Bourke, P. & Cullen, P.J.
2009. Application of natural antimicrobials for food preservation. Journal
of Agricultural and Food Chemistry 57(14): 5987-6000.
Torres, A., López de Dicastillo, C.,
Ríos, M., Bastias, I., Guarda, A. & Galotto, M.J. 2014. Effect of
organoclay incorporation on thermal, physical and morphological properties of
LLDPE nanocomposites for active food packaging applications. Journal of the
Chilean Chemical Society 59(4): 2681-2685.
Trombetta, D., Castelli, F.,
Sarpietro, M.G., Venuti, V., Cristani, M., Daniele, C., Saija, A., Mazzanti, G.
& Bisignano, G. 2005. Mechanisms of antibacterial action of three
monoterpenes. Antimicrobial Agents and Chemotherapy 49(6): 2474-2478.
Weerakkody, N.S., Caffin, N.,
Turner, M.S. & Dykes, G.A. 2010. In
vitro antimicrobial activity of less-utilized spice and herb extracts
against selected food-borne bacteria. Food Control 21(10): 1408-1414.
Wu, Y., Qin, Y.Y., Yuan, M.L., Li,
L., Chen, H.Y., Cao, J.X. & Yang, J.Y. 2014. Characterization of an
antimicrobial poly (lactic acid) film prepared with poly
(ε‐caprolactone) and thymol for active packaging. Polymers for
Advanced Technologies 25(9): 948-954.
Xiong, H.G., Tang, S.W., Tang, H.L.
& Zou, P. 2008. The structure and properties of a starch-based
biodegradable film. Carbohydrate Polymers 71(2): 263-268.
Zhang, L.M., Li, R.C., Dong, F.,
Tian, A.Y., Li, Z.J. & Dai, Y.J. 2015. Physical, mechanical and
antimicrobial properties of starch films incorporated with
ε-poly-l-lysine. Food Chemistry 166: 107-114.
Zohuriaan, M.J. & Shokrolahi, F.
2004. Thermal studies on natural and modified gums. Polymer Testing 23(5): 575-579.
*Pengarang
untuk surat-menyurat; email: nozieana@upm.edu.my
|