Sains
Malaysiana 49(2)(2020): 335-341
http://dx.doi.org/10.17576/jsm-2020-4902-11
Umbilical Cord Derived Mesenchymal Stem
Cell Therapy for Osteoarthritis: A Consolidated Review
(Tali Pusat Terbitan Terapi Sel Stem Mesenkima untuk Osteoartritis: Suatu Ulasan
Lengkap)
JIANWEI ZUO1, CHEN CHEN2,
XINTAO ZHANG1 & WENTAO ZHANG1*
1Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen,
Guangdong, 518036, P.R. China
2Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen,
Guangdong, 518036, P.R. China
Received: 22 April
2019/Accepted: 6 November 2019
Abstract
Osteoarthritis (OA) is a leading cause of
degenerative disease and is the most common persistent condition worldwide. The
common burden imposed by OA significantly damages the articular cartilage,
which results in pain and seriously impacts the quality of life in the affected
people. Disease progression is assumed to increase with obesity and aging. The
current therapies include weight loss, activity adjustment, traditional pain
management and replacement of the affected joint. To overcome these
limitations, recently, cell-based therapies mainly Umbilical cord derived
Mesenchymal stem cell (UC-MSC) have become an attractive cell source for an
allogeneic mesenchymal stem cell to repair and regenerate the structure and
function of articular tissues. Although the mechanism is not clearly defined,
it is believed that the paracrine signaling, inflammatory response, and
immunomodulatory role of UC-MSCs play a crucial role in developing a treatment
approach of OA. The purpose of this review was to outline the advantages of
using UC-MSCs in treating OA. This review also discusses the possible hurdles
that stand in the way of successful implementation of UC-MSC as a routine
treatment regimen for OA.
Keywords: Allogeneic
stem cell; mesenchymal
stem cell; osteoarthritis; umbilicalcord tissue
Abstrak
Osteoartitis
(OA) adalah penyebab utama penyakit degeneratif dan merupakan keadaan yang
paling biasa di seluruh dunia. Beban umum yang disebabkan oleh OA dengan ketara
merosakkan artikul rawan yang mengakibatkan kesakitan dan memberi kesan serius
terhadap kualiti hidup orang yang mengalaminya. Janjang penyakit ini dianggap
meningkat dengan keobesan dan penuaan. Terapi semasa termasuklah penurunan
berat badan, pelarasan aktiviti, pengurusan sakit secara tradisi dan
penggantian sendi yang terjejas. Untuk mengatasi keterbatasan ini, terbaru,
terapi berasaskan sel terutamanya tali
pusat terbitan terapi sel stem mesenkima (UC-MSC) telah menjadi sumber sel yang menarik untuk sel stem alogen mensenkima
untuk membaiki dan menjana semula struktur dan fungsi tisu artikul. Walaupun
mekanisme itu belum ditakrifkan dengan jelas, dipercayai bahawa isyarat
parakrin, tindak balas keradangan dan peranan imunomodul UC-MSC memainkan
peranan penting dalam membangunkan pendekatan rawatan OA. Tujuan kajian ini
adalah untuk menggariskan kelebihan menggunakan UC-MSC dalam merawat OA. Ulasan
ini juga membincangkan kemungkinan halangan yang berlaku dalam pelaksanaan
UC-MSC dengan jayanya sebagai regimen rawatan rutin untuk OA.
Kata kunci: Osteoartitis; sel
stem alogen; sel stem mesenkima; tisu tali pusat
REFERENCES
Akkiraju, H. & Nohe, A. 2015. Role of chondrocytes in
cartilage formation, progression of osteoarthritis and cartilage regeneration. J. Dev. Biol. 3(4): 177-192.
Arthritis
Information. 2017. http://www.arthritisaustralia.com.au/index.php/arthritis
information.html.
Bagga, H., Burkhardt, D., Sambrook, P. & March, L. 2006. Longterm
effects of intra-articular hyaluronan on synovial fluid in osteoarthritis of
the knee. J. Rheumatol. 33(5):
946-950.
Barry, F. & Murphy, M. 2013. Mesenchymal
stem cells in joint disease and repair. Nat.
Rev. Rheumatol. 9(10): 584-594.
Bartolucci, J., Verdugo, F.J., González, P.L., Larrea, R.E.,
Abarzua, E., Goset, C., Rojo, P., Palma, I., Lamich, R., Pedreros, P.A.,
Valdivia, G., Lopez, V.M., Nazzal, C., Alcayaga-Miranda, F., Cuenca, J.,
Brobeck, M.J., Patel, A.N., Figueroa, F.E. & Khoury, M. 2017. Safety and
efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells
in patients with heart failure: A phase 1/2 randomized controlled trial
(RIMECARD trial randomized clinical trial of intravenous infusion umbilical
cord mesenchymal stem cells on cardiopathy). Circ. Res. 121(10): 1192-1204.
Blagojevic, M., Jinks, C., Jeffery, A. & Jordan, K.P. 2010. Risk
factors for onset of osteoarthritis of the knee in older adults: a systematic
review and meta-analysis. Osteoarthritis
Cartilage 18(1): 24-33.
Brandt, K.D., Dieppe, P. & Radin, E. 2009. Etiopathogenesis of
osteoarthritis. Med. Clin. North Am. 93(1): 1e24.
Can, A. & Karahuseyinoglu, S. 2007. Human umbilical cord
stroma with regard to the source of foetus-derived stem cells. Stem Cells 25: 2886-2895.
Centeno, C.J., Al-Sayegh, H., Bashir, J., Goodyear, S. &
Freeman, M.D. 2015. A dose response analysis of a specific bone marrow
concentrate treatment protocol for knee osteoarthritis. BMC Musculoskelet Disord. 18(16): 258. doi:
10.1186/s12891-015-0714-z.
Chang, Y.H., Wu, K.C., Liu, H.W., Chu, T.Y. & Ding, D.C. 2018.
Human umbilical cord-derived mesenchymal stem cells reduce monosodium
iodoacetate-induced apoptosis in cartilage. Tzu
Chi Medical Journal 30(2): 71-80.
Chang, Y.H., Liu, H.W., Wu, K.C. & Ding, D.C. 2016.
Mesenchymal stem cells and their clinical applications in osteoarthritis. Cell Transplant 25(5): 937-950.
De Windt, T.S., Hendriks, J.A., Zhao, X., Vonk, L.A., Creemers, L.B.,
Dhert, W.J., Randolph, M.A. & Saris, D.B. 2014. Concise review: Unraveling
stem cell cocultures in regenerative medicine: Which cell interactions steer
cartilage regeneration and how? Stem
Cells Transl. Med. 3(6): 723-733.
Diekman, B.O. & Guilak, F. 2013. Stem
cell-based therapies for osteoarthritis: Challenges and opportunities. Curr. Opin. Rheumatol. 25(1): 119-126.
Estes, B.T., Diekman, B.O., Gimble, J.M. &
Guilak, F. 2010. Isolation of adipose-derived stem cells and their induction to
a chondrogenic phenotype. Nat. Protoc. 5(7): 1294-1311.
Fong, C.Y., Subramanian, A., Gauthaman, K.,
Venugopal, J., Biswas, A., Ramakrishna, S. & Bongso, A. 2012. Human
umbilical cord Wharton's jelly stem cells undergo enhanced chondrogenic
differentiation when grown on nanofibrous scaffolds and in a sequential
two-stage culture medium environment. Stem
Cell Rev. 8(1): 195-209.
Hached, F., Vinatier, C., Le Visage, C., Gondé, H., Guicheux, J.,
Grimandi, G. & Billon-Chabaud, A. 2017. Biomaterial-assisted cell therapy
in osteoarthritis: From mesenchymal stem cells to cell encapsulation. Best Pract. Res. Clin. Rheumatol. 31(5):
730-745.
Horie, M., Choi, H., Lee, R.H., Reger, R.L., Ylostalo, J., Muneta,
T., Sekiya, I. & Prockop, D.J. 2012. Intra-articular injection of human
mesenchymal stem cells (MSCs) promote rat meniscal regeneration by being activated
to express Indian hedgehog that enhances expression of type II collagen. Osteoarthritis Cartilage 20(10):
1197-1207.
Im, G.I., Shin, Y.W. & Lee, K.B. 2005. Do adipose
tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic
potential as bone marrow-derived cells? Osteoarthr.
& Cartil. 13(10): 845-853.
Iwata, H., Ono, S., Sato, K., Sato, T. & Kawamura, M. 1993.
Bone morphogenetic protein-induced muscle- and synovium-derived cartilage
differentiation in vitro. Clin. Orthop. & Relat. Res. (296):
295-300.
Kennedy, J.W., Johnston, L., Cochrane, L. & Boscainos, P.J. 2013.
Total knee arthroplasty in the elderly: Does age affect pain, function or
complications? Clin. Orthop. & Relat.
Res. 471(6): 1964-1969.
Kim, D.W., Staples, M., Shinozuka, K.,
Pantcheva, P., Kang, S.D. & Borlongan, C.V. 2013. Wharton's jelly-derived
mesenchymal stem cells: Phenotypic characterization and optimizing their
therapeutic potential for clinical applications. Int. J. Mol. Sci. 14(6): 11692-11712.
Kwon, A., Kim, Y., Kim, M., Kim, J., Choi, H.,
Jekarl, D.W., Lee, S., Kim, J.M., Shin, J.C. & Park, I.Y. 2016.
Tissue-specific differentiation potency of mesenchymal stromal cells from
perinatal tissues. Sci. Rep. 5(6):
23544.
Lavrentieva, A., Hatlapatka, T., Neumann, A.,
Weyand, B. & Kasper, C. 2013. Potential for osteogenic and chondrogenic
differentiation of MSC. Adv. Biochem.
Eng. Biotechnol. 129: 73-88.
Lee, W.Y. & Wang, B. 2007. Cartilage repair by mesenchymal
stem cells: Clinical trial update and perspectives. J. Orthop. Translat. 9(9): 76-88.
Li, Y., Wei, X., Zhou, J. & Wei, L. 2013.
The age-related changes in cartilage and osteoarthritis. Biomed. Res. In. 2013: 916530.
MacFarlane, R.J., Graham, S.M., Davies, P.S.,
Korres, N., Tsouchnica, H., Heliotis, M., Mantalaris, A. & Tsiridis, E.
2013. Anti-inflammatory role and immunomodulation of mesenchymal stem cells in
systemic joint diseases: Potential for treatment. Expert Opin. Ther. Targets 17(3): 243-254.
Matas, J., Orrego, M., Amenabar, D., Infante, C., Tapia-Limonchi,
R., Cadiz, M.I., Alcayaga-Miranda, F., González, P.L., Muse, E., Khoury, M.,
Figueroa, F.E. & Espinoza, F. 2019. Umbilical cord-derived mesenchymal
stromal cells (MSCs) for knee osteoarthritis: Repeated MSC dosing is superior
to a single MSC dose and to hyaluronic acid in a controlled randomized phase
I/II trial. Stem Cells Transl. Med. 8(3): 215-224.
Mobasheri, A., Kalamegam, G., Musumeci, G. & Batt, M.E. 2014.
Chondrocyte and mesenchymal stem cell-based therapies for cartilage repair in
osteoarthritis and related orthopaedic conditions. Maturitas 78(3): 188-198.
Murphy, J.M., Fink, D.J., Hunziker, E.B. &
Barry, F.P. 2003. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum. 48(12): 3464-3474.
Orth, P., Rey-Rico, A., Venkatesan, J.K., Madry,
H. & Cucchiarini, M. 2014. Current perspectives in stem cell research for
knee cartilage repair. Stem Cells Cloning 16(7): 1-17.
Payne, K.A., Didiano, D.M. & Chu, C.R. 2010. Donor sex
and age influence the chondrogenic potential of human femoral bone marrow stem
cells. Osteoarthr. & Cartil. 18(5): 705-713.
Pelttari, K., Winter, A., Steck, E., Goetzke, K., Hennig, T.,
Ochs, B.G., Aigner, T. & Richter, W. 2006. Premature induction of
hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification
and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum. 54(10): 3254-3266.
Rao, M.S. & Mattson, M.P. 2001. Stem cells
and aging: Expanding the possibilities. Mech.
Ageing Dev. 122(7): 713-734.
Reppel, L., Schiavi, J., Charif, N., Leger, L.,
Yu, H., Pinzano, A., Henrionnet, C., Stoltz, J.F., Bensoussan, D. &
Huselstein, C. 2015. Chondrogenic induction of mesenchymal stromal/stem cells
from Wharton's jelly embedded in alginate hydrogel and without added growth
factor: An alternative stem cell source for cartilage tissue engineering. Stem Cell Res. Ther. 30(6): 260.
Robertsson, O., Dunbar, M., Pehrsson, T., Knutson, K. & Lidgren, L.
2000. Patient satisfaction after knee arthroplasty: A report on 27, 372 knees
operated on between 1981 and 1995 in Sweden. Acta. Orthop. Scand. 71(3): 262-267.
Saulnier, N., Viguier, E., Perrier-Groult, E.,
Chenu, C., Pillet, E., Roger, T., Maddens, S. & Boulocher, C. 2015.
Intra-articular administration of xenogeneic neonatal mesenchymal stromal cells
early after meniscal injury down-regulates metalloproteinase gene expression in
synovium and prevents cartilage degradation in a rabbit model of
osteoarthritis. Osteoarthritis Cartilage 23(1): 122-133.
Scharstuhl, A., Schewe, B., Benz, K.,
Gaissmaier, C., Bühring, H.J. & Stoop, R. 2007. Chondrogenic potential of
human adult mesenchymal stem cells is independent of age or osteoarthritis
etiology. Stem Cells 25(12):
3244-3251.
Silverwood,
V., Blagojevic-Bucknall, M., Jinks, C., Jordan, J.L., Protheroe, J. &
Jordan, K.P. 2015. Current evidence on risk factors for knee osteoarthritis in
older adults: A systematic review and meta-analysis. Osteoarthritis Cartilage 23(4): 507-515.
Steinert, A.F., Ghivizzani, S.C., Rethwilm, A., Tuan, R.S., Evans,
C.H. & Noth, U. 2007. Major biological obstacles for persistent cell-based
regeneration of articular cartilage. Arthritis
Res. Ther. 9(3): 213.
Stockmann, P., Park, J., von Wilmowsky, C.,
Nkenke, E., Felszeghy, E., Dehner, J.F., Schmitt, C., Tudor, C. & Schlegel,
K.A. 2012. Guided bone regeneration in pig calvarial bone defects using
autologous mesenchymal stem/progenitor cells - A comparison of different tissue
sources. J. Cranio-Maxillofac. Surg. 40(4): 310-320.
Subramani, B., Subbannagounder, S., Palanivel,
S., Ramanathanpullai, C., Sivalingam, S., Yakub, A., Sadananda, Rao M.,
Seenichamy, A., Pandurangan, A.K., Tan, J.J. & Ramasamy, R. 2016.
Generation and characterization of human cardiac resident and non-resident
mesenchymal stem cell. Cytotechnology 68(5): 2061-2073.
Vaishya, R., Pariyo, G.B., Agarwal, A.K. & Vijay, V. 2016.
Non-operative management of osteoarthritis of the knee joint. J. Clin. Orthop. Trauma 7(3): 170-176.
Valiyaveettil, M., Achur, R.N., Muthusamy, A. & Gowda, D.C.
2004. Characterization of chondroitin sulfate and dermatan sulfate
proteoglycans of extracellular matrices of human umbilical cord blood vessels
and Wharton’s jelly. Glycoconj. J. 21(6): 361-375.
Wang, H., Yan, X., Jiang, Y., Wang, Z., Li, Y. & Shao, Q.
2018. The human umbilical cord stem cells improve the viability of OA
degenerated chondrocytes. Mol. Med. Rep. 17(3): 4474-4482.
Wang, H.S., Hung, S.C., Peng, S.T., Huang, C.C.,
Wei, H.M., Guo, Y.J., Fu, Y.S., Lai, M.C. & Chen, C.C. 2004. Mesenchymal
stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells 22(7): 1330-1337.
Wang, L., Seshareddy, K., Weiss, M.L. & Detamore, M.S.
2009a. Effect of initial seeding density on human umbilical cord mesenchymal
stromal Cells for fibrocartilage tissue engineering. Tissue Eng. Part A 15: 1009-1017.
Wang, L., Tran, I., Seshareddy, K., Weiss, M.L. &
Detamore, M.S. 2009b. A comparison of human bone marrow-derived mesenchymal stem cells and
human umbilical cord-derived mesenchymal stromal cells for cartilage tissue
engineering. Tissue Eng. Part A 15:
2259- 2266.
Wen, Y., Jiang, B., Cui, J., Li, G., Yu, M.,
Wang, F., Zhang, G., Nan, X., Yue, W., Xu, X. & Pei, X. 2013. Superior
osteogenic capacity of different mesenchymal stem cells for bone tissue
engineering. Oral Surg. Oral Med. Oral
Pathol. Oral Radiol. 116(5): e324-e332.
Wyles, C.C., Houdek, M.T., Behfar, A. & Sierra, R.J. 2015.
Mesenchymal stem cell therapy for osteoarthritis: current perspectives. Stem Cells Cloning 28(8): 117-124.
Zhang, B.Y., Wang, B.Y., Li, S.C., Luo, D.Z.,
Zhan, X., Chen, S.F., Chen, Z.S., Liu, C.Y., Ji, H.Q., Bai, Y.S., Li, D.S.
& He, Y. 2018. Evaluation of the curative effect of umbilical cord
mesenchymal stem cell therapy for knee arthritis in dogs using imaging
technology. Stem Cells Int. 15:
1983025.
Zuk, P.A., Zhu, M., Ashjian, P., De Ugarte,
D.A., Huang, J.I., Mizuno, H., Alfonso, Z.C., Fraser, J.K., Benhaim, P. &
Hedrick, M.H. 2002. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12): 4279-4295.
*Corresponding
author; email: zhangwentao1121@sina.com
|