Sains
Malaysiana 49(2)(2020): 375-382
http://dx.doi.org/10.17576/jsm-2020-4902-15
The Effect of Intranasal
Administration of ACTH Analogue Toward Neural Progenitor/Stem Cells
Proliferation after Traumatic Brain Injury
(Kesan Administrasi
Intranasal Analog ACTH terhadap Proliferasi Neural Progenitor/Sel Stem selepas
Kecederaan Trauma Otak)
MICHAEL
LUMINTANG LOE1*, RR. SUZY INDHARTY1, ANDRE MP SIAHAAN1,
STEVEN TANDEAN1 & WIBI RIAWAN2
1Department
of Neurosurgery, Faculty of Medicine, Universitas Sumatera Utara/Haji
Adam Malik General Hospital, Medan 20155, Indonesia
2Department
of Biochemistry, Faculty of Medicine, University of Brawijaya, Malang
65145, Indonesia
Received: 7 September 2019/Accepted:
24 October 2019
ABSTRACT
Traumatic brain injury
(TBI) is a major health problem because of its high mortality and
long-term disability worldwide. Neural progenitor/stem cells (NPSCs)
that survive in certain parts of the brain, enable brain to produce
new neurons and glia. ACTH4-10Pro8-Gly9-Pro10
has a modulation effect on the expression and activation of the
BDNF/TrkB system in the hippocampus area. The BDNF/TrkB pathway
system is a potential therapeutic target toward NPSCs proliferation
after TBI. Thirty male Sprague-Dawley rats were
divided into three groups, i.e A=sham-operated controls; B=TBI; C=TBI+intranasal ACTH4-10Pro8-Gly9-Pro10
administration. After 24 h, rats' brains were immunohistochemically
processed, to observe the number of cells expressing mBDNF, TrkB,
and SOX2 in the subgranular zone(SGZ) of the hippocampus dentate
gyrus(DG). Data were analyzed with SPSS 17, ANOVA, Post Hoc Tukey
HSD test, with p value < 0,05. Mean expression
of BDNF group C=16.33 ± 2.83 increased significantly compared
to group A=8.33 ± 1.32(p=0.0001) and group B=5.89 ±1.69(p=0.0001).
Mean expression of TrkB group C=17.00 ± 1.58 increased significantly
compared to group A=4.33 ± 1.73(p=0.0001) and group B=5.89
± 2.47(p=0.0001), TrkB expression in group B increased insignificantly
compared to group A (p= 0.234). Mean expression of SOX2 in group C=12.56
± 2.07 increased significantly compared to group B = 8.89
±2.318(p=0.0001) and group A=4.89 ± 2.42(p=0.0001).
ACTH4-10Pro8-Gly9-Pro10
can increase the expression of BDNF and TrkB, and the proliferation
of NPSCs in the subgranular zone (SGZ) of the hippocampus dentate
gyrus (DG).
Keywords: ACTH; BDNF; neural stem cells; SOX2; TrkB; SEMAXÒ; traumatic
brain injury
ABSTRAK
Kecederaan trauma otak (TBI) adalah
masalah kesihatan utama di seluruh dunia kerana kadar motaliti yang
tinggi dan kecacatan jangka panjang. Neural
progenitor/sel stem (NPSCs) yang bertahan pada bahagian tertentu
otak, membolehkan otak menghasilkan sel neuron dan glia baru. ACTH4-10Pro8-Gly9-Pro10
mempunyai kesan modulasi pada ekspresi dan pengaktifan sistem BDNF/TrkB
di kawasan hipokampus. Sistem BDNF/TrkB merupakan sasaran terapeutik
yang berpotensi ke arah proliferasi NPSC selepas TBI. Tiga
puluh tikus Sprague-Dawley jantan dibahagikan kepada tiga kumpulan, iaitu A=kawalan negatif; B=TBI;
C=TBI+ACTH4-10Pro8-Gly9-Pro10
intranasal. Selepas 24 jam, otak tikus diproses secara imunohistokimia
untuk melihat bilangan sel yang mengekspresikan mBDNF, TrkB, dan
SOX2 pada subgranular zone(SGZ) daripada hipokampus dentat girus (DG). Data dianalisis dengan
ujian SPSS 17, ANOVA, Post Hoc Tukey HSD, dengan nilai p <0.05.
Ekspresi BDNF kumpulan C=16.33±2.83 meningkat secara signifikan
berbanding kumpulan A=8.33±1.32(p=0.0001), dan kumpulan B=5.89 ±1.69(p=0.0001). Secara keseluruhan
ekspresi TrkB kumpulan C =17.00 ±1.58 meningkat secara signifikan
berbanding kumpulan A=4.33±1.73(p=0.0001) dan kumpulan B=5.89±2.47(p=0.0001),
ekspresi TrkB pada kumpulan B meningkat tidak signifikan dibandingkan
dengan kumpulan A (p= 0.234). Rata-rata ekspresi SOX2 kumpulan C=12.56±2.07 meningkat
secara signifikan dibandingkan dengan kumpulan B=8.89±2.318(p=0.0001)
dan kumpulan A=4.89±2.42(p=0.0001). ACTH4-10Pro8-Gly9-Pro10
dapat meningkatkan ekspresi BDNF dan TrkB serta meningkatkan
proliferasi NPSCs pada zon subgranulr (SGZ) daripada hipokampus dentat girus (DG).
Kata
kunci: ACTH; BDNF; kecederaan trauma otak; sel stem neural; SEMAXÒ; SOX2; TrkB
REFERENCES
Agapova, T.Y., Agniullin, Y.V., Shadrina, M.I., Shram, S.I.,
Slominsky, P.A., Lymborska, S.A. & Myasoedov, N.F. 2007. Neurotrophin
gene expression in rat brain under the action of semax, an analogue
of ACTH4-10. Neuroscience Letters 417(2): 201-205.
Atwal, J.K., Massie, B., Miller,
F.D. & Kaplan, D.R. 2000. The TrkB-Shc site signals neuronal survival and
local axon growth via MEK and
P13-Kinase. Neuron 27(2): 265-277.
Cacialli, P.,
Palladino, A. & Lucini, C. 2018. Role of brain-derived
neurotrophic factor during the regenerative response after traumatic brain
injury in adult zebrafish. Neural Regeneration Research 13(6): 941-944.
Carney, N., Totten, A.M., O'Reilly,
C., Ullman, J.S., Hawryluk, G.W.J., Bell, M.J., Bratton, S.L., Chesnut,
R., Harris, O.A., Kissoon, N., Rubiano, A.M., Shutter, L., Tasker,
R.C., Vavilala, M.S., Wilberger, J., Wright, D.W. & Ghajar,
J. 2016. Guidelines for the Management of Severe Traumatic Brain Injury. 4th
ed. New York: Brain Trauma
Foundation. p. 244.
Centers for Disease Control and
Prevention. 2015. Report to Congress on
Traumatic Brain Injury in the United States: Epidemiology and Rehabilitation.
Atlanta, GA: National Center for Injury Prevention and Control; Division of
Unintentional Injury Prevention.
Conte, V., Raghupathi, R., Watson,
D.J., Fujimoto, S., Royo, C., Marklund, N., Stocchetti, N. & McIntosh, T.K.
2009. TrkB gene transfer does not alter hippocampal neuronal loss and cognitive
deficits following traumatic brain injury in mice. Restor. Neurol. Neurosci. 26(1): 45-56.
Dewan, M.C., Rattani, A., Gupta, S.,
Baticulon, R.E., Hung, Y-C., Punchak, M., Agrawal, A., Adeleye, A.O., Shrime,
M.G., Rubiano, A.M. & Rosenfeld, J.V. 2018. Estimating the
global incidence of traumatic brain injury. Journal of Neurosurgery 130(4): 1080-1097.
Dolotov, O.V.,
Karpenko, E.A., Inozemtseva, L.S., Seredenina, T.S., Levitskaya, N.G.,
Rozyczka, J., Dubynina, E.V., Novosadova, E.V., Andreeva, L.A., Alfeeva, L.Y.,
Kamensky, A.A., Grivennikov, I.A., Myasoedov, N.F. & Engele, J. 2006. Semax, an Analog of ACTH(4-10) with cognitive effects,
regulates BDNF and TrkB Expression in the rat hippocampus. Brain Research 1117(1): 54-60.
Faigle, R. & Song, H.J. 2013.
Signaling mechanisms regulating adult neural stem cells and neurogenesis. Biochimica
et Biophysica Acta(BBA) - General Subjects 1830(2): 2435-2448.
https://doi.org/10.1016/j.bbagen.2012.09.002.
Failla, M.D., Conley, Y.P. &
Wagner, A.K. 2016. Brain-derived neurotrophic factor (BDNF) in traumatic brain
injury-related mortality: Interrelationships between genetics and acute
systemic and central nervous system BDNF profiles. Neurorehabilitation and
Neural Repair 30(1): 83-93.
Faried, A., Bachani, A.M., Sendjaja, A.N., Hung, Y.W. & Arifin, M.Z. 2017. Characteristics of moderate
and severe traumatic brain injury of motorcycle crashes in Bandung, Indonesia. World
Neurosurgery 100(4): 195-200. https://doi.org/10.1016/j.wneu.2016.12.133.
Gage, F.H. & Temple, S. 2013.
Neural stem cells: Generating and regenerating the brain. Neuron 80(3):
588-601. https://doi.org/10.1016/j.neuron.2013.10.037.
Galgano, M., Toshkezi, G., Qiu, X.C., Russell, T., Chin, L. & Zhao, L-R. 2017. Traumatic brain injury: Current treatment strategies and
future endeavors. Cell Transplantation 26(7): 1118-1130.
Gao, X. & Chen, J.H. 2009.
Conditional knockout of brain-derived neurotrophic factor in the hippocampus
increases death of adult-born immature neurons following traumatic brain
injury. Journal of Neurotrauma 26(8): 1325-1335.
Girgis, F., Pace, J., Sweet, J.
& Miller, J.P. 2016. Hippocampal neurophysiologic changes after mild
traumatic brain injury and potential neuromodulation treatment approaches. Frontiers
in Systems Neuroscience 10 (February).
https://doi.org/10.3389/fnsys.2016.00008.
Gupta, V., You, Y., Gupta, V.,
Klistorner, A. & Graham, S. 2013. TrkB receptor signalling: Implications in
neurodegenerative, psychiatric and proliferative disorders. International
Journal of Molecular Sciences 14(5): 10122-10142.
Hicks, R.R., Zhang, L., Dhillon,
H.S., Prasad, M.R. & Seroogy, K.B. 1998. Expression of TrkB MRNA is altered
in rat hippocampus after experimental brain trauma. Molecular Brain Research 59(2): 264-268.
Jin, K.L., Sun, Y.J., Xie, L., Peel,
A., Mao, X.O., Batteur, S. & Greenberg, D.A. 2003. Directed migration of
neuronal precursors into the ischemic cerebral cortex and striatum. Molecular
and Cellular Neuroscience 24(1): 171-189.
https://doi.org/10.1016/S1044-7431(03)00159-3.
Kaplan, G.B., Vasterling, J.J. &
Vedak, P.C. 2010. Brain-derived neurotrophic factor in traumatic brain injury,
post-traumatic stress disorder, and their comorbid conditions: Role in
pathogenesis and treatment. Behavioural Pharmacology 21(5-6): 427-437. https://doi.org/10.1097/FBP.0b013e32833d8bc9.
Koroleva, S.V. & Myasoedov, N.F.
2018. Semax as a universal drug for therapy and research. Biology Bulletin 45(6): 589-600. https://doi.org/10.1134/S1062359018060055.
Lindvall, O. & Kokaia, Z. 2015.
Neurogenesis following stroke affecting the adult brain. Cold Spring Harb.
Perspect. Biol. 7(11): a019034.
Loe, M.L. & Maliawan, S. 2019.
Spontaneous recovery of medial prefrontal syndrome following giant olfactory
groove meningioma resection: A case report. Bali Medical Journal 8(2):
287-291. https://doi.org/10.15562/bmj.v8i2.1454.
Medvedeva, E.V., Dmitrieva, V.G.,
Povarova, O.V., Limborska, S.A., Skvortsova, V.I., Myasoedov, F.N. &
Dergunova, L.V. 2013. Effect of Semax and its C-Terminal fragment Pro-Gly-Pro
on the expression of VEGF family genes and their receptors in experimental
focal ischemia of the rat brain. Journal of Molecular Neuroscience 49(2): 328-333. https://doi.org/10.1007/s12031-012-9853-y.
Numakawa, T., Suzuki, S., Kumamaru,
E., Adachi, N., Richards, M. & Kunugi, H. 2010. BDNF function and
intracellular signaling in neurons. Histol. Histopathol. 25: 237-258.
O’Dell, D.M., Raghupathi, R., Crino,
P.B., Eberwine, J.H. & McIntosh, T.K. 2000. Traumatic brain injury alters
the molecular fingerprint of TUNEL-positive cortical neurons in vivo: A single-cell analysis. The
Journal of Neuroscience: The Official Journal of the Society for Neuroscience 20(13): 4821-4828.
Poduslo, J.F. & Curran, G.L.
1996. Permeability at the blood-brain and blood-nerve barriers of the
neurotrophic factors: NGF, CNTF, NT-3, BDNF. Molecular Brain Research 36(2): 280-286.
Prins, M., Greco, T., Alexander, D.
& Giza, C.C. 2013. The pathophysiology of traumatic brain injury at a
glance. Disease Models & Mechanisms 6(6): 1307-1315.
Rabinowitz, A.R. & Levin, H.S.
2014. Cognitive sequelae of traumatic brain injury. The Psychiatric Clinics
of North America 37(1): 1-11.
Rolfe, A. & Sun, D. 2015. Stem
cell therapy in brain trauma: Implications for repair and regeneration of
injured brain in experimental TBI models. In Brain Neurotrauma: Molecular,
Neuropsychological, and Rehabilitation Aspects, edited by Kobeissy, F.H.
Boca Raton: CRC Press/Taylor & Francis.
Sandhir, R., Onyszchuk, G. &
Berman, N.E.J. 2008. Exacerbated glial response in the aged mouse hippocampus
following controlled cortical impact injury. Experimental Neurology 213(2): 372-380.
Seo, D.E., Shin, S.D., Song, K.J.,
Ro, Y.S., Hong, K.J. & Park, J.H. 2018. Effect of hypoxia on mortality and
disability in traumatic brain injury according to shock status: A
cross-sectional analysis. The American Journal of Emergency Medicine 12:
S0735675718309847. https://doi.org/10.1016/j.ajem.2018.12.022.
Sun, D. 2014. The potential of
endogenous neurogenesis for brain repair and regeneration following traumatic
brain injury. Neural Regeneration Research 9(7): 688-692.
Urrea, C., Castellanos, D.A., Sagen,
J., Tsoulfas, P., Bramlett, H.M. & Dietrich, W.D. 2006. Widespread cellular
proliferation and focal neurogenesis after traumatic brain injury in the rat. Res.
Neurology and Neuroscience 25: 65-76.
Wolf, J.A., Johnson, B.N., Johnson,
V.E., Putt, M.E., Browne, K.D., Mietus, C.J., Brown, D.P., Wofford, K.L.,
Smith, D.H., Grady, M.S., Cohen, A.S. & Cullen, D.K. 2017. Concussion
induces hippocampal circuitry disruption in swine. Journal of Neurotrauma 34(14): 2303-2314. https://doi.org/10.1089/neu.2016.4848.
Zhang, C-L., Zou, Y.H., He, W.M.,
Gage, F.H. & Evans, R.M. 2008. A role for adult TLX-positive neural stem
cells in learning and behaviour. Nature 451(7181): 1004-1007.
https://doi.org/10.1038/nature06562.
Zhang, Y.H., Xian, X.C. & Nicol,
G.D. 2008. Brain-derived neurotrophic factor enhances the excitability of rat
sensory neurons through activation of the P75 neurotrophin receptor and the
sphingomyelin pathway. The Journal of Physiology 586(13): 3113-3127.
https://doi.org/10.1113/jphysiol.2008.152439.
Zheng, W.M., ZhuGe, Q.C., Zhong, M.,
Chen, G.R., Shao, B., Wang, H., Mao, X.O., Xie, L., & Jin, K.L. 2013.
Neurogenesis in adult human brain after traumatic brain injury. Journal of
Neurotrauma 30(22): 1872-1880. https://doi.org/10.1089/neu.2010.1579.
Zuccato, C., Marullo,
M., Vitali, B., Tarditi, A., Mariotti, C., Valenza, M., Lahiri,
N., Wild, E.J., Sassone, J., Ciammola,
A., Bachoud-Lèvi, A.C., Tabrizi, S.J., Di Donato, S. &
Cattaneo, E. 2011. Brain-derived neurotrophic factor in patients with Huntington's
Disease. PLoS ONE 6(8): e22966. https://doi.org/10.1371/journal.pone.0022966.
*Corresponding author; email: dr.michael.lumintang@gmail.com
|