Sains Malaysiana 49(3)(2020): 503-515
http://dx.doi.org/10.17576/jsm-2020-4903-05
Morpho-agronomical and Biochemical Traits Screening and Genetic Variability in
Selected Black Cumin (Nigella sativa) Mutant Lines
(Ciri Morfo-agronomi dan Biokimia Penyaringan
serta Kebolehubahan
Genetik pada Garis
Mutan Jintan
Hitam (Nigella sativa) Terpilih)
MOHAMMED ELSAYED
EL-MAHROUK1, MOSSAD KHAIRY MAAMOUN2, OMNEYA
FAROUK ABU EL-LEEL3, YASER HASSAN DEWIR1,4*,
ANTAR NASR EL-BANNA5, YOUGASPHREE NAIDOO6
& SUBODH KUMAR DATTA7
1Department of Horticulture, Faculty of Agriculture, Kafrelsheikh
University, Kafr El-Sheikh 33516, Egypt
2Breeding research Department for Vegetables Crops, Aromatic & Medicinal
Plants, Horticultural Research Institute, Agriculture Research Center,
Giza, Egypt
3Medicinal and Aromatic Plant Research Department, Horticulture Research
Institute (HRI), Agricultural Research Centre (ARC), Cairo, Egypt
4Plant Production Department, P.O. Box 2460, College of Food and Agriculture
Sciences, King Saud University, Riyadh 11451, Saudi Arabia
5Department of Genetics, Faculty of Agriculture, Kafrelsheikh
University, Kafr El-Sheikh 33516, Egypt
6School of Life Sciences, University of KwaZulu-Natal, Westville Campus,
Private Bag X54001, Durban 4000, South Africa
7Ex-C.S.I.R., Emeritus Scientist, India
Received: 20 October 2019/Accepted: 12 November 2019
ABSTRACT
The production of
new Nigella sativa cultivars by plant breeding programs
is difficult due to its narrow genetic base. A number of induced
morphological traits, yield components and percent content of fatty
acid methyl esters in the parent line and nine selected mutants
(Mt1-Mt9) have been reported in two generations (M3 and
M4) of N. sativa to determine the best genotype
to release as a new cultivar. The results showed that Mt2 plants
were the tallest (118.3 and 149.7 cm in M3 and M4,
respectively). The highest seed yield per plant was measured for
Mt5; Mt4 showed the highest per cent of palmitic and stearic acids,
11.93% and 13.70%, respectively; whereas Mt8 had the highest percent
content (45.67%) of linoleic acid. Five Inter Simple Sequence Repeat (ISSR)
markers were used to investigate genetic variability within mutant
lines and their parent. These primers generated 71 reproducible
and scorable amplification products across
the genotypes tested. Fifty-eight of these fragments were highly
polymorphic (81.7%). The proportion of common bands (13) was low
(18.3%). All primers produced unique fragments and generated 33
specific alleles. The average number of amplification products per
primer was 14.2. The size of ISSR amplified fragments varied from
1109 to 148 base pairs (bp). The similarity between each mutant and the parent line
varied from 0.56% to 100%. Finally, the present investigation indicated that
mutants Mt5 and Mt6 are promising high yielding genotypes which
can be recommended as new cultivars, whereas Mt3 and Mt7 possess
an attractive phenotype appropriate for ornamental use.
Keywords: Fatty
acid; ISSR; mutant; Nigella sativa; yield
ABSTRAK
Penghasilan kultivar Nigella sativa baharu melalui program pembiakan tumbuhan adalah sukar kerana asas
genetik yang sempit.
Beberapa ciri morfologi
yang diinduksi, komponen
hasil dan kandungan
peratus metil
ester asid lemak dalam
titisan induk
dan sembilan mutan
terpilih (Mt1-Mt9) telah
dilaporkan dalam dua generasi (M3 dan M4) N. sativa untuk menentukan
genotip terbaik yang boleh dikeluarkan sebagai kultivar baharu. Keputusan menunjukkan bahawa tumbuhan Mt2 adalah tertinggi (118.3 dan 149.7 cm masing-masing dalam M3
dan M4). Hasil
bijian tertinggi telah diukur bagi
tumbuhan Mt5, Mt4 menunjukkan
kadar tertinggi
asid palmitik dan
stearik, masing-masing
11.93% dan 13.70%, manakala
Mt8 mempunyai kandungan
peratus tertinggi (45.67%) bagi asid linoleik.
Sebanyak lima penanda
Inter Simple Sequence Repeat
(ISSR) digunakan untuk mengkaji kebolehubahan genetik dalam titisan
mutan dan induk mereka. Pencetus
ini menjanakan
71 produk amplifikasi yang boleh diulang dan
penskoran merentas
genotip yang diuji. Sejumlah 58 fragmen ini sangat polimorfik
(81.7%). Perkadaran jalur
biasa (13) adalah rendah (18.3%). Semua pencetus menghasilkan serpihan unik dan
menghasilkan 33 alel
khusus. Purata bilangan produk amplifikasi bagi setiap pencetus adalah 14.2. Saiz serpihan ISSR yang diperkuat bervariasi daripada 1109 hingga 148 pasangan asas (bp). Kesamaan
antara setiap
mutan dan garis
induk adalah
antara 0.56% hingga 100%. Akhirnya, kajian ini menunjukkan bahawa mutan MT5 dan Mt6 merupakan genotip yang memberikan hasil yang tinggi dan boleh disyorkan
sebagai kultivar
baru, manakala Mt3 dan Mt7 mempunyai fenotip yang sesuai untuk kegunaan tumbuhan hiasan.
Kata kunci: Asid lemak; hasil;
ISSR; mutan; Nigella sativa
REFERENCES
Afify, A.M.R., Rashed, M.M., Ebtesam, A.M. & El-Beltagi, H.S. 2013. Effect
of gamma radiation on the lipid profiles of soybean, peanut and
sesame seed oils. Grasas y Acei.
64: 356-368.
Aga, E., Bekele,
E. & Bryngelsson, T. 2005. Inter simple
sequence repeat (ISSR) variation in forest coffee trees (Coffea Arabica L.) populations from Ethiopia. Genetica
124: 213-221.
Ahloowalia, B.S., Maluszynski, M. &
Nichterlein, K. 2004. Global impact of
mutation-derived varieties. Euphytica
135: 187-204.
Assefa, E., Alemayehu, A. & Mamo, T. 2015. Adaptability study of black cumin (Nigella
sativa L.) varieties in the mid and high land areas of Kaffa
zone, South West Ethiopia. Agriculture, Forestry and Fisheries
4: 14-17.
Aitzetmuller, K., Werner, G. & Ivanov, S.A. 1997. Seeds oils of Nigella species
and of closely related genera. Fundamental 4: 385-388.
Araújo, F., Pacheco, M.V. & Vieira, F. 2016. ISSR molecular
markers for the study of the genetic diversity of Mimosa caesalpiniaefolia Benth. IDESIA
34: 47-52.
Aytac, Z. & Kinaci, G. 2009.
Genetic variability and association studies of some quantitative
characters in winter rapeseed (Brassica napus
L.). African Journal of Biotechnology 8: 3547-3554.
Baake, E. & Gabriel, W. 1999. Biological evolution through
mutation, selection and drift: An introductory review. Annual
Review of Computational Physics 7: 203-264.
Biswas, A.K. & Datta,
A.K. 1982. Studies on induced auto tetraploids in Nigella sativa
L. Cell and Chromosome Research 5: 81-83.
Biswas, A.K.
& Chatterjee, A.K. 1971. Studies on the induction of ploidy
in some species. Bulletin of the Botanical Society of
Bengal 25: 19-21.
Broertjes, C. & Van Harten, A.M.
1988. Applied mutation
breeding for vegetatively
propagated crops. In Plant Breeding. Amsterdam: Elsevier.
Chahal, G.S. & Gosal, S.S. 2002.
Principles and Procedures of Plant Breeding:
Biotechnological and Conventional Approaches. Boca Raton: CRC Press. p. 604.
Chandorkar, K.R. & Dengler,
N.G. 1987. Effect of low-level continuous gamma irradiation on vascular
cambium activity in Scotch pine Pinus
sylvestris L. Environmental and Experimental Botany
27: 165-175.
Chu, Y., Wu, C.L., Holbrook,
C.C., Tillman, B.L., Person, G. & Ozias-Akins,
P. 2011. Marker-assisted selection to pyramid nematode resistance
and the high oleic trait in peanut. Plant Genome 4: 110-117.
Datta, S.K. 2014. Induced mutagenesis: Basic knowledge for
technological success. In Mutagenesis:
Exploring Genetic Diversity of Crops, edited by Tomlekova,
N.B., Kozgar, M.L. & Wani,
M.R. The Netherlands: Wageningen Academic
Publishers. pp. 95-137.
Datta, S.K. 2012. Success story of induced mutagenesis for
development of new ornamental varieties. In Bioremediation,
Biodiversity and Bioavailability. Global Science Books. 6(I):
15-26.
Datta, A.K. & Biswas, A.K. 1985. Induced mutagenesis in
Nigella sativa L. Cytologia
50: 545-562.
Datta, A.K. & Biswas, A.K. 1983. X-rays sensitivity in
Nigella sativa L. Cytologia
48: 293-303.
Datta, A.K., Saha, A., Bhattacharya,
A., Mandal, A., Paul, R. & Sengupta,
S. 2012. Black cumin (Nigella sativa L.) - A review. Journal
of Plant Development Sciences 4: 1-43.
Datta, A.K., Biswas, A.K. & Sen, S. 1986. Gamma radiation
sensitivity in Nigella sativa L. Cytologia 51: 609-615.
Diepenbrock, W. 2000. Yield analysis of winter oilseed rape (Brassica
napus L.): A review. Field Crops
Research 67: 35-47.
Dixit, V.,
Prabha, R. & Chaudhary, B.R. 2013. Effects of EMS and SA on meiotic
cells and thymoquinone content of Nigella
sativa L. cultivars. International
Journal of Cytology, Cytosystematics and
Cytogenetics 66: 178-185.
Doo, H.S., Cheong, Y.K.
& Park,
K.H. 2008. Variation in the chemical composition of peanut mutants
induced by gamma radiation. Korean Journal of Breeding Science
40: 113-118.
Doyle, J.J. & Doyle, J.L. 1990. Isolation
of plant DNA from fresh tissue. Focus 12: 13-15.
Duncan, D.B.
1955. Multiple range and multiple F test. Biometrics 11:
1-42.
El-Mahrouk,
M.E., Maamoun, M.K., Dewir,
Y.H., Omran, S.A. & EL-Banna,
A.N. 2015. Morphological and molecular characterization of induced
mutants in Nigella sativa L. using irradiation and chemical
mutagens. Egyptian Journal of Plant Breeding 19: 257-272.
Folch, J., Lees, M. & Stanles,
G.H.S. 1957. A simple method for the isolation and purification
of total lipids from animal tissue. The Journal of Biological
Chemistry 226: 497-509.
Fufa, M. 2018. Agronomic performance, genotype × environment
interaction and stability of black cumin genotype grown in Bale,
South Eastern Ethiopia. Advances
in Crop Science and Technology 6: 3. doi: 10.4172/2329-8863.1000358.
Gunckel, J.E. & Sparrow, A.H. 1961. Ionizing radiations:
Biochemical, physiological and morphological aspects of their effects
of plants. Encycl. Plant Physiol.
16: 555-611.
Hammer, O.,
Harper, D. & Ryan, P. 2003. Past: Paleontological statistics
software package for education and data analysis. Palaeontologia
Electronica 4: 9.
Hisamura, A., Mine, D., Takebe, T., Abe, T., Hayashi, Y. &
Hirano, T. 2016. Breeding of summer-autumn flowering chrysanthemum
cv. Hakuryo with a little generation of malformed flower.
RIKEN Accelerator Progress Report 49: 24.
Iqbal, S.M.
2012. Protein and DNA Marker Studies in
Nigella sativa L. LAP Lambert
Academic Publishing. p. 84.
Jaccard, P. 1908. Nouvellesrecherchessur
la distribution florale. Bulletin de la Société vaudoise des sciences naturelles
44: 223-270.
Kapital, B., Feyissa, T., Petros, Y. & Mohammed, S. 2015. Molecular diversity study
of black cumin (Nigella sativa L.) from Ethiopia as revealed
by inter simple sequence repeat (ISSR) markers. African Journal
of Biotechnology 14: 1543-1551.
Kara, N., Katar, D. & Baydar, H. 2015.
Yield and quality of black cumin (Nigella sativa L.) populations: The effect of ecological conditions. Turkish
Journal of Field Crops 20: 9-14.
Kumar, G. & Gupta, P. 2007. Mutagenic
efficiency of lower doses of gamma rays in black cumin (Nigella
sativa L.). Cytologia 72:
435-440.
Kumar, A.,
Mishra, P., Baskaran, K., Shukla, A.K.,
Shasany, A.K. & Sundaresan,
V. 2016. Higher efficiency of ISSR markers over plastid psbA-trnH
region in resolving taxonomical status of genus Ocimum
L. Ecology and Evolution 6: 7671-7682.
Liu, B. &
Wendel, J.F. 2001. Inter simple sequence
repeat (ISSR) polymorphisms as a genetic marker system in cotton.
Molecular Ecology Notes 1: 205-208.
Maamoun, M.K., El-Mahrouk, M.E., Dewir, Y.H. & Omran,
S.A. 2014. Effect of radiation and chemical mutagens on seeds germination
of black cumin (Nigella sativa L.). Journal of Agricultural
Technology 10: 1183-1199.
Mahmoud, M.M. & Ibrahem, S.E. 2000. Plant
Physiology. Faculty
of Agriculture Ain Shams University. pp. 164-185.
Maluszynski, M., Ahloowalia, B.S. &
Sigurbjornsson, B. 1995. Application of
in vivo and in vitro mutation
techniques for crop improvement. Euphytica
85: 303-315.
Matthaus, B. & Ozcan,
M.M. 2011. Fatty acids, tocopherol and sterol contents of some Nigella
species seed oil. Czech Journal of Food Sciences 29: 145-150.
Micke, A. 1991. Induced mutations for crop improvement. Gamma Field Symposium 30: 1-21.
Micke, A., Donini, B. & Maluszynski, M. 1990. Induced
Mutations for Crop Improvement. Mutation Breed. Rev. FAO/IAEA, Vienna
No. 7: 1-41.
Mitra, P.K. & Bhowmick,
K.G. 1997. Gamma radiation and EMS treatment of black cumin cultivars
for mutational bioassay. Indian Journal of Genetics and Plant
Breeding 57: 158-160.
Mitra, B., Patra, T. & Maiti, S. 2006. Variability correlation and path analysis
of the attributing characters of mustard (Brassica species).
Research on Crops 7: 191-193.
Mondal, S. & Badigannavar, A.M. 2010. Induction of genetic variability for fatty
acid composition in a large seeded groundnut variety through induced
mutagenesis. Journal of SAT Agricultural Research 8: 1-4.
Morad, A.A., EI-Hashash, E.F., Hoger, M. & Zaaza, E.I. 2011.
Inheritance of yield and yield components for mutated population
using gamma irradiation in some bread wheat cultivars. Agricultural
Research Journal Suez Canal University 11: 7-16.
Nawar, W.W. 1978. Reaction mechanisms in the radiolysis of
fats. Journal of Agricultural and Food Chemistry 26: 21-25.
Ortiz, R. 1997.
Morphological variation in Musa germplasm. Genetic Resources
and Crop Evolution 44: 393-402.
Pruthi, J.S. 1998. Spices
and Condiments. National Book Trust India. pp. 118-120.
Rajeswara, R.B.R., Singh, K., Kaul,
P.N. & Bhattacharya, A.K. 1989. The effect of plant spacing
and application of N and P fertilizers on the productivity and nutrient
uptake of davana (Artemisia pallens
Wall.). International Journal of Tropical Agriculture 7:
229-236.
Rout, G.R.
& Aparajita, S. 2009. Genetic relationships
among 23 ficus accessions using inter
simple sequence repeat markers. Journal of Crop Science and Biotechnology
12: 91-96.
Safaei, Z., Azizi, M., Davarynejad, G. & Aroiee, H.
2017. The Effect of planting seasons on quantitative and qualitative
characteristics of Black cumin (Nigella sativa L.). Journal
of Medicinal Plants and By-Products 1: 27-33.
Saha, A. & Datta, K. 2002.
Gamma-rays induced reciprocal translocation in black cumin. Cytologia 67: 389-396.
Sakamoto, K.,
Takatori, Y., Chiwata,
R., Matsumura, T., Tsukiashi, K., Hayashi,
Y. & Abe, T. 2016. Production of mutant line with early flowering
at low temperature in spray-type chrysanthemum cultivar induced
by C-ion beam irradiation. RIKEN Accelerator Progress Report
49: 262.
Schum, A. & Preil, W. 1998.
Induced mutations in ornamental plants. In Somaclonal Variation and Induced Mutations in Crop Improvement, edited by Jain,
S.M., Brar, D.S. & Ahloowalia,
B.S. Netherlands: Springer. pp. 333-366.
Shafieizargar, A., Awang, Y., Juraimi, A. & Othman, R. 2013. Comparative studies between diploid
and tetraploid Dez Orange [Citrus sinensis (L.) Osb.] under salinity
stress. Australian Journal of Crop Science 10: 1436-1441.
Shu, Q.Y. 2009.
Induced plant mutations in the genomic era. Food and Agriculture Organization. Rome: United Nations.
Siew, W.L., Tang, T.S.
& Tan, Y.A. 1995. Methods
of Test for Palm Oil and Palm Oil Products. Palm Oil Research
Institute of Malaysia. Ministry of Primary Industries, Malaysia.
pp. 40-42.
Srivastava,
S. & Gupta, P.S. 2008. Inter simple sequence repeat profile
as a genetic marker system in sugarcane. Sugar Tech. 10:
48-52.
Subrahmanyam,
N.S. 2009. Modern Plant Taxonomy. New Delhi: Publishing House PVT Ltd.
Üstün, G., Kent, L., Çekın,
N. & Cıvelekoğlu, H. 1990. Investigation of the technological properties
of Nigella sativa (black cumin) seed oil. Journal of the American Oil Chemists' Society 67: 958-960.
Vijayan, K., Srivatsava, P.P., Nair,
C.V., Awasthi, A.K., Tikader,
A., Sreenivasa, B. & Urs,
S.R. 2006. Molecular characterization and identification of markers
associated with yield traits in mulberry using ISSR markers. Plant
Breeding 125: 298-300.
Voisine, R., Vezina, L.P. & Willemont, C. 1991. Induction
of senescence-like deterioration of micro small membranes from cauliflower
by free radicals generated during gamma irradiation. Plant Physiology 97: 545-550.
Wolff, K. &
Peters-Van, R.J. 1993. Rapid detection of genetic variability in
chrysanthemum (Dendranthema
grandiflora Tzvelev.) using random primers. Heredity 71: 335-341.
Yamaguchi,
H. 2018. Mutation breeding of ornamental plants using ion beams.
Breeding Science 68: 71-78.
Zietkiewicz, E.A., Rafalski, R. &
Labuda, D. 1994. Genome fingerprinting by simple sequence
repeat (SSR) anchored polymerase chain reaction amplification. Genomics 20: 176-183.
*Corresponding author; email: ydewir@ksu.edu.sa
|