Sains Malaysiana 49(3)(2020): 503-515

http://dx.doi.org/10.17576/jsm-2020-4903-05

 

Morpho-agronomical and Biochemical Traits Screening and Genetic Variability in Selected Black Cumin (Nigella sativa) Mutant Lines

(Ciri Morfo-agronomi dan Biokimia Penyaringan serta Kebolehubahan Genetik pada Garis Mutan Jintan Hitam (Nigella sativa) Terpilih)

 

MOHAMMED ELSAYED EL-MAHROUK1, MOSSAD KHAIRY MAAMOUN2, OMNEYA FAROUK ABU EL-LEEL3, YASER HASSAN DEWIR1,4*, ANTAR NASR EL-BANNA5, YOUGASPHREE NAIDOO6 & SUBODH KUMAR DATTA7

 

1Department of Horticulture, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt

 

2Breeding research Department for Vegetables Crops, Aromatic & Medicinal Plants, Horticultural Research Institute, Agriculture Research Center, Giza, Egypt

 

3Medicinal and Aromatic Plant Research Department, Horticulture Research Institute (HRI), Agricultural Research Centre (ARC), Cairo, Egypt

 

4Plant Production Department, P.O. Box 2460, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia

 

5Department of Genetics, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt

 

6School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa

 

7Ex-C.S.I.R., Emeritus Scientist, India

 

Received: 20 October 2019/Accepted: 12 November 2019

 

ABSTRACT

The production of new Nigella sativa cultivars by plant breeding programs is difficult due to its narrow genetic base. A number of induced morphological traits, yield components and percent content of fatty acid methyl esters in the parent line and nine selected mutants (Mt1-Mt9) have been reported in two generations (M3 and M4) of N. sativa to determine the best genotype to release as a new cultivar. The results showed that Mt2 plants were the tallest (118.3 and 149.7 cm in M3 and M4, respectively). The highest seed yield per plant was measured for Mt5; Mt4 showed the highest per cent of palmitic and stearic acids, 11.93% and 13.70%, respectively; whereas Mt8 had the highest percent content (45.67%) of linoleic acid. Five Inter Simple Sequence Repeat (ISSR) markers were used to investigate genetic variability within mutant lines and their parent. These primers generated 71 reproducible and scorable amplification products across the genotypes tested. Fifty-eight of these fragments were highly polymorphic (81.7%). The proportion of common bands (13) was low (18.3%). All primers produced unique fragments and generated 33 specific alleles. The average number of amplification products per primer was 14.2. The size of ISSR amplified fragments varied from 1109 to 148 base pairs (bp). The similarity between each mutant and the parent line varied from 0.56% to 100%. Finally, the present investigation indicated that mutants Mt5 and Mt6 are promising high yielding genotypes which can be recommended as new cultivars, whereas Mt3 and Mt7 possess an attractive phenotype appropriate for ornamental use.  

Keywords: Fatty acid; ISSR; mutant; Nigella sativa; yield

 

ABSTRAK

Penghasilan kultivar Nigella sativa baharu melalui program pembiakan tumbuhan adalah sukar kerana asas genetik yang sempit. Beberapa ciri morfologi yang diinduksi, komponen hasil dan kandungan peratus metil ester asid lemak dalam titisan induk dan sembilan mutan terpilih (Mt1-Mt9) telah dilaporkan dalam dua generasi (M3 dan M4) N. sativa untuk menentukan genotip terbaik yang boleh dikeluarkan sebagai kultivar baharu. Keputusan menunjukkan bahawa tumbuhan Mt2 adalah tertinggi (118.3 dan 149.7 cm masing-masing dalam M3 dan M4). Hasil bijian tertinggi telah diukur bagi tumbuhan Mt5, Mt4 menunjukkan kadar tertinggi asid palmitik dan stearik, masing-masing 11.93% dan 13.70%, manakala Mt8 mempunyai kandungan peratus tertinggi (45.67%) bagi asid linoleik. Sebanyak lima penanda Inter Simple Sequence Repeat (ISSR) digunakan untuk mengkaji kebolehubahan genetik dalam titisan mutan dan induk mereka. Pencetus ini menjanakan 71 produk amplifikasi yang boleh diulang dan penskoran merentas genotip yang diuji. Sejumlah 58 fragmen ini sangat polimorfik (81.7%). Perkadaran jalur biasa (13) adalah rendah (18.3%). Semua pencetus menghasilkan serpihan unik dan menghasilkan 33 alel khusus. Purata bilangan produk amplifikasi bagi setiap pencetus adalah 14.2. Saiz serpihan ISSR yang diperkuat bervariasi daripada 1109 hingga 148 pasangan asas (bp). Kesamaan antara setiap mutan dan garis induk adalah antara 0.56% hingga 100%. Akhirnya, kajian ini menunjukkan bahawa mutan MT5 dan Mt6 merupakan genotip yang memberikan hasil yang tinggi dan boleh disyorkan sebagai kultivar baru, manakala Mt3 dan Mt7 mempunyai fenotip yang sesuai untuk kegunaan tumbuhan hiasan.

Kata kunci: Asid lemak; hasil; ISSR; mutan; Nigella sativa

 

 REFERENCES

Afify, A.M.R., Rashed, M.M., Ebtesam, A.M. & El-Beltagi, H.S. 2013. Effect of gamma radiation on the lipid profiles of soybean, peanut and sesame seed oils. Grasas y Acei. 64: 356-368.

Aga, E., Bekele, E. & Bryngelsson, T. 2005. Inter simple sequence repeat (ISSR) variation in forest coffee trees (Coffea Arabica L.) populations from Ethiopia. Genetica 124: 213-221.

Ahloowalia, B.S., Maluszynski, M. & Nichterlein, K. 2004. Global impact of mutation-derived varieties. Euphytica 135: 187-204.

Assefa, E., Alemayehu, A. & Mamo, T. 2015. Adaptability study of black cumin (Nigella sativa L.) varieties in the mid and high land areas of Kaffa zone, South West Ethiopia. Agriculture, Forestry and Fisheries 4: 14-17.

Aitzetmuller, K., Werner, G. & Ivanov, S.A. 1997. Seeds oils of Nigella species and of closely related genera. Fundamental 4: 385-388.

Araújo, F., Pacheco, M.V. & Vieira, F. 2016. ISSR molecular markers for the study of the genetic diversity of Mimosa caesalpiniaefolia Benth. IDESIA 34: 47-52.

Aytac, Z. & Kinaci, G. 2009. Genetic variability and association studies of some quantitative characters in winter rapeseed (Brassica napus L.). African Journal of Biotechnology 8: 3547-3554.

Baake, E. & Gabriel, W. 1999. Biological evolution through mutation, selection and drift: An introductory review. Annual Review of Computational Physics 7: 203-264.

Biswas, A.K. & Datta, A.K. 1982. Studies on induced auto tetraploids in Nigella sativa L. Cell and Chromosome Research 5: 81-83.

Biswas, A.K. & Chatterjee, A.K. 1971. Studies on the induction of ploidy in some species. Bulletin of the Botanical Society of Bengal 25: 19-21.

Broertjes, C. & Van Harten, A.M. 1988. Applied mutation breeding for vegetatively propagated crops. In Plant Breeding. Amsterdam: Elsevier.

Chahal, G.S. & Gosal, S.S. 2002. Principles and Procedures of Plant Breeding: Biotechnological and Conventional Approaches. Boca Raton: CRC Press. p. 604. 

Chandorkar, K.R. & Dengler, N.G. 1987. Effect of low-level continuous gamma irradiation on vascular cambium activity in Scotch pine Pinus sylvestris L. Environmental and Experimental Botany 27: 165-175.

Chu, Y., Wu, C.L., Holbrook, C.C., Tillman, B.L., Person, G. & Ozias-Akins, P. 2011. Marker-assisted selection to pyramid nematode resistance and the high oleic trait in peanut. Plant Genome 4: 110-117.

Datta, S.K. 2014. Induced mutagenesis: Basic knowledge for technological success. In Mutagenesis: Exploring Genetic Diversity of Crops, edited by Tomlekova, N.B., Kozgar, M.L. & Wani, M.R. The Netherlands: Wageningen Academic Publishers. pp. 95-137.

Datta, S.K. 2012. Success story of induced mutagenesis for development of new ornamental varieties. In Bioremediation, Biodiversity and Bioavailability. Global Science Books. 6(I): 15-26.

Datta, A.K. & Biswas, A.K. 1985. Induced mutagenesis in Nigella sativa L. Cytologia 50: 545-562.

Datta, A.K. & Biswas, A.K. 1983. X-rays sensitivity in Nigella sativa L. Cytologia 48: 293-303.

Datta, A.K., Saha, A., Bhattacharya, A., Mandal, A., Paul, R. & Sengupta, S. 2012. Black cumin (Nigella sativa L.) - A review. Journal of Plant Development Sciences 4: 1-43.

Datta, A.K., Biswas, A.K. & Sen, S. 1986. Gamma radiation sensitivity in Nigella sativa L. Cytologia 51: 609-615.

Diepenbrock, W. 2000. Yield analysis of winter oilseed rape (Brassica napus L.): A review. Field Crops Research 67: 35-47.

Dixit, V., Prabha, R. & Chaudhary, B.R. 2013. Effects of EMS and SA on meiotic cells and thymoquinone content of Nigella sativa L. cultivars. International Journal of Cytology, Cytosystematics and Cytogenetics 66: 178-185.

Doo, H.S., Cheong, Y.K. & Park, K.H. 2008. Variation in the chemical composition of peanut mutants induced by gamma radiation. Korean Journal of Breeding Science 40: 113-118.

Doyle, J.J. & Doyle, J.L. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13-15.

Duncan, D.B. 1955. Multiple range and multiple F test. Biometrics 11: 1-42.

El-Mahrouk, M.E., Maamoun, M.K., Dewir, Y.H., Omran, S.A. & EL-Banna, A.N. 2015. Morphological and molecular characterization of induced mutants in Nigella sativa L. using irradiation and chemical mutagens. Egyptian Journal of Plant Breeding 19: 257-272.

Folch, J., Lees, M. & Stanles, G.H.S. 1957. A simple method for the isolation and purification of total lipids from animal tissue. The Journal of Biological Chemistry 226: 497-509.

Fufa, M. 2018. Agronomic performance, genotype × environment interaction and stability of black cumin genotype grown in Bale, South Eastern Ethiopia. Advances in Crop Science and Technology 6: 3. doi: 10.4172/2329-8863.1000358.

Gunckel, J.E. & Sparrow, A.H. 1961. Ionizing radiations: Biochemical, physiological and morphological aspects of their effects of plants. Encycl. Plant Physiol. 16: 555-611.

Hammer, O., Harper, D. & Ryan, P. 2003. Past: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 9.

Hisamura, A., Mine, D., Takebe, T., Abe, T., Hayashi, Y. & Hirano, T. 2016. Breeding of summer-autumn flowering chrysanthemum cv. Hakuryo with a little generation of malformed flower. RIKEN Accelerator Progress Report 49: 24.

Iqbal, S.M. 2012. Protein and DNA Marker Studies in Nigella sativa L. LAP Lambert Academic Publishing. p. 84.

Jaccard, P. 1908. Nouvellesrecherchessur la distribution florale. Bulletin de la Société vaudoise des sciences naturelles 44: 223-270.

Kapital, B., Feyissa, T., Petros, Y. & Mohammed, S. 2015. Molecular diversity study of black cumin (Nigella sativa L.) from Ethiopia as revealed by inter simple sequence repeat (ISSR) markers. African Journal of Biotechnology 14: 1543-1551.

Kara, N., Katar, D. & Baydar, H. 2015. Yield and quality of black cumin (Nigella sativa L.) populations: The effect of ecological conditions. Turkish Journal of Field Crops 20: 9-14.

Kumar, G. & Gupta, P. 2007. Mutagenic efficiency of lower doses of gamma rays in black cumin (Nigella sativa L.). Cytologia 72: 435-440.

Kumar, A., Mishra, P., Baskaran, K., Shukla, A.K., Shasany, A.K. & Sundaresan, V. 2016. Higher efficiency of ISSR markers over plastid psbA-trnH region in resolving taxonomical status of genus Ocimum L. Ecology and Evolution 6: 7671-7682.

Liu, B. & Wendel, J.F. 2001. Inter simple sequence repeat (ISSR) polymorphisms as a genetic marker system in cotton. Molecular Ecology Notes 1: 205-208.

Maamoun, M.K., El-Mahrouk, M.E., Dewir, Y.H. & Omran, S.A. 2014. Effect of radiation and chemical mutagens on seeds germination of black cumin (Nigella sativa L.). Journal of Agricultural Technology 10: 1183-1199.

Mahmoud, M.M. & Ibrahem, S.E. 2000. Plant Physiology. Faculty of Agriculture Ain Shams University. pp. 164-185.

Maluszynski, M., Ahloowalia, B.S. & Sigurbjornsson, B. 1995. Application of in vivo and in vitro mutation techniques for crop improvement. Euphytica 85: 303-315.

Matthaus, B. & Ozcan, M.M. 2011. Fatty acids, tocopherol and sterol contents of some Nigella species seed oil. Czech Journal of Food Sciences 29: 145-150.

Micke, A. 1991. Induced mutations for crop improvement. Gamma Field Symposium 30: 1-21.

Micke, A., Donini, B. & Maluszynski, M. 1990. Induced Mutations for Crop Improvement.             Mutation Breed. Rev. FAO/IAEA, Vienna No. 7: 1-41.

Mitra, P.K. & Bhowmick, K.G. 1997. Gamma radiation and EMS treatment of black cumin cultivars for mutational bioassay. Indian Journal of Genetics and Plant Breeding 57: 158-160.

Mitra, B., Patra, T. & Maiti, S. 2006. Variability correlation and path analysis of the attributing characters of mustard (Brassica species). Research on Crops 7: 191-193.

Mondal, S. & Badigannavar, A.M. 2010. Induction of genetic variability for fatty acid composition in a large seeded groundnut variety through induced mutagenesis. Journal of SAT Agricultural Research 8: 1-4.

Morad, A.A., EI-Hashash, E.F., Hoger, M. & Zaaza, E.I. 2011. Inheritance of yield and yield components for mutated population using gamma irradiation in some bread wheat cultivars. Agricultural Research Journal Suez Canal University 11: 7-16.

Nawar, W.W. 1978. Reaction mechanisms in the radiolysis of fats. Journal of Agricultural and Food Chemistry 26: 21-25.

Ortiz, R. 1997. Morphological variation in Musa germplasm. Genetic Resources and Crop Evolution 44: 393-402.

Pruthi, J.S. 1998. Spices and Condiments. National Book Trust India. pp. 118-120.

Rajeswara, R.B.R., Singh, K., Kaul, P.N. & Bhattacharya, A.K. 1989. The effect of plant spacing and application of N and P fertilizers on the productivity and nutrient uptake of davana (Artemisia pallens Wall.). International Journal of Tropical Agriculture 7: 229-236.

Rout, G.R. & Aparajita, S. 2009. Genetic relationships among 23 ficus accessions using inter simple sequence repeat markers. Journal of Crop Science and Biotechnology 12: 91-96.

Safaei, Z., Azizi, M., Davarynejad, G. & Aroiee, H. 2017. The Effect of planting seasons on quantitative and qualitative characteristics of Black cumin (Nigella sativa L.). Journal of Medicinal Plants and By-Products 1: 27-33.

Saha, A. & Datta, K. 2002. Gamma-rays induced reciprocal translocation in black cumin. Cytologia 67: 389-396.

Sakamoto, K., Takatori, Y., Chiwata, R., Matsumura, T., Tsukiashi, K., Hayashi, Y. & Abe, T. 2016. Production of mutant line with early flowering at low temperature in spray-type chrysanthemum cultivar induced by C-ion beam irradiation. RIKEN Accelerator Progress Report 49: 262.

Schum, A. & Preil, W. 1998. Induced mutations in ornamental plants. In Somaclonal Variation and Induced Mutations in Crop Improvement, edited by Jain, S.M., Brar, D.S. & Ahloowalia, B.S. Netherlands: Springer. pp. 333-366.

Shafieizargar, A., Awang, Y., Juraimi, A. & Othman, R. 2013. Comparative studies between diploid and tetraploid Dez Orange [Citrus sinensis (L.) Osb.] under salinity stress. Australian Journal of Crop Science 10: 1436-1441.

Shu, Q.Y. 2009. Induced plant mutations in the genomic era. Food and Agriculture Organization. Rome: United Nations.

Siew, W.L., Tang, T.S. & Tan, Y.A. 1995. Methods of Test for Palm Oil and Palm Oil Products. Palm Oil Research Institute of Malaysia. Ministry of Primary Industries, Malaysia. pp. 40-42.

Srivastava, S. & Gupta, P.S. 2008. Inter simple sequence repeat profile as a genetic marker system in sugarcane. Sugar Tech. 10: 48-52.

Subrahmanyam, N.S. 2009. Modern Plant Taxonomy. New Delhi: Publishing House PVT Ltd.

Üstün, G., Kent, L., Çekın, N. & Cıvelekoğlu, H. 1990. Investigation of the technological properties of Nigella sativa (black cumin) seed oil. Journal of the American Oil Chemists' Society 67: 958-960.

Vijayan, K., Srivatsava, P.P., Nair, C.V., Awasthi, A.K., Tikader, A., Sreenivasa, B. & Urs, S.R. 2006. Molecular characterization and identification of markers associated with yield traits in mulberry using ISSR markers. Plant Breeding 125: 298-300.

Voisine, R., Vezina, L.P. & Willemont, C. 1991. Induction of senescence-like deterioration of micro small membranes from cauliflower by free radicals generated during gamma irradiation. Plant Physiology 97: 545-550.

Wolff, K. & Peters-Van, R.J. 1993. Rapid detection of genetic variability in chrysanthemum (Dendranthema grandiflora Tzvelev.) using random primers. Heredity 71: 335-341.

Yamaguchi, H. 2018. Mutation breeding of ornamental plants using ion beams. Breeding Science 68: 71-78.

Zietkiewicz, E.A., Rafalski, R. & Labuda, D. 1994. Genome fingerprinting by simple sequence repeat (SSR) anchored polymerase chain reaction amplification. Genomics 20: 176-183.

 

*Corresponding author; email: ydewir@ksu.edu.sa

 

 

 

 

 

previous