Sains Malaysiana 49(3)(2020): 527-536

http://dx.doi.org/10.17576/jsm-2020-4903-07

 

Metalotionein 1 daripada Eleusine indica L. Memberikan Toleransi terhadap Logam Berat dalam Escherichia coli

(Metallothionein 1 from Eleusine indica L. Confers Heavy Metal Tolerance in Escherichia coli)

 

ROOHAIDA OTHMAN1,2* & NORUL HUDA MOHD NASIR1

 

1Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 20 May 2019/Accepted: 5 December 2019

 

ABSTRAK

Metalotionein (MT) berpotensi besar dalam pemuliharaan alam sekitar disebabkan peranannya yang penting dalam metabolisme dan penyahtoksikan ion logam melalui proses pengkelatan ion logam. cDNA MT1 daripada Eleusine indica L. (eiMT1) telah diamplifikasi dan diekspreskan dalam Escherichia coli. Pengekspresan protein rekombinan diaruh menggunakan 1 mM IPTG pada 37°C selama 4 jam. Protein rekombinan dengan berat molekul 12 kDa telah diperoleh dan ditulenkan menggunakan dua kaedah penulenan iaitu kromatografi penukaran ion dan kromatografi penurasan gel. Analisis jujukan protein rekombinan telah mengesahkan bahawa protein eiMT yang diekspreskan mengandungi jujukan asid amino sebagaimana dijangkakan bagi protein yang dikodkan oleh cDNA eiMT1. Untuk menilai keupayaan protein eiMT ini memberikan toleransi terhadap logam berat bagi E. coli, sel bakteria yang ditransformasikan dengan plasmid yang membawa cDNA eiMT1 telah dikulturkan dalam media yang mengandungi ion tembaga (Cu), zink (Zn), besi (Fe), kromium (Cr) dan kadmium (Cd). Sel yang mengekspres eiMT didapati menunjukkan tahap pertumbuhan yang lebih tinggi berbanding sel jenis liar di dalam media yang mengandungi kesemua ion logam serta mampu bermandiri di dalam Cu, Zn, Fe dan Cr sehingga kepekatan 500 µM manakala bagi Cd sehingga kepekatan logam 400 µM. Hasil kajian ini menunjukkan bahawa eiMT membolehkan peningkatan toleransi sel E. coli terhadap logam berat dan memainkan peranan penting dalam menyingkirkan ion logam berlebihan. Hal ini mencadangkan bahawa eiMT juga kemungkinan mampu melakukan penyahtoksikan ion logam berlebihan dalam E. indica. Oleh itu, sel E. coli yang membawa cDNA eiMT di samping tumbuhan E. indica sendiri boleh diaplikasikan dalam proses remediasi dengan menyerap logam berat dalam persekitaran yang tercemar.

 

Kata kunci: Eleusine indica L.; logam berat; metalotionein; protein rekombinan; rumput sambau

 

Abstract

Metallothionein (MT) has a huge potential in environmental conservation due to its important role in metal ion metabolism and detoxification by chelating the metal ions. MT1 cDNA from Eleusine indica L. (eiMT1) was amplified and expressed in Escherichia coli cells. Recombinant protein expression was induced using 1 mM IPTG at 37oC for 4 h. Recombinant protein with the molecular mass of 12 kDa was obtained and purified through two purification methods involving ion exchange chromatography and gel filtration chromatography. Sequence analysis of the recombinant protein confirmed that the expressed eiMT protein contained amino acid sequence as expected for the protein encoded by the eiMT1 cDNA. To evaluate the ability of this eiMT protein to confer heavy metal tolerance in E. coli, the bacterial cells transformed with the recombinant plasmids containing the eiMT1 cDNA were grown in media containing copper (Cu), zinc (Zn), iron (Fe), chromium (Cr) and cadmium (Cd) ions. The eiMT-expressing cells showed higher growth level compared to wild type cells in media containing all metal ions and was able to survive in Cu, Zn, Fe and Cr until 500 µM in concentration while for Cd until 400 µM. These results showed that eiMT allowed enhanced heavy metal tolerance in E. coli cells and played an important role in removing excess metal ions. This suggested that the eiMT protein might also be capable of detoxifying metal ions in E. indica. Hence, both the E. coli cells containing the eiMT cDNA as well as the E. indica plant itself may be applied in remediation process by adsorbing heavy metals in polluted environment.

 

Keywords: Eleusine indica L.; goose grass; heavy metal; metallothionein; recombinant protein

 

REFERENCES

Ali, H., Khan, E. & Ilahi, I. 2019. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry 2019: 6730305.

Amiard, J.C., Amiard-Triquet, C., Barka, S., Pellerin, J. & Rainbow, P.S. 2006. Metallothioneins in aquatic invertebrates: Their role in metal detoxification and their use as biomarkers. Aquatic Toxicology 76(2): 160-202.

Begg, S.L., Eijkelkamp, B.A., Luo, Z., Couñago, R.M., Morey, J.R., Maher, M.J., Ong, C.Y., McEwan, A.G., Kobe, B., O’Mara, M.L., Paton, J.C. & McDevitt, C.A. 2015. Dysregulation of transition metal ion homeostasis is the molecular basis for cadmium toxicity in Streptococcus pneumoniae. Nature Communications 6: 6418.

Bennion, B.J. & Daggett, V. 2003. The molecular basis for the chemical denaturation of proteins by urea. Proceedings of the National Academy of Science 100(9): 5142-5147.

Blindauer, C.A. 2011. Bacterial metallothioneins: Past, present, and questions for the future. Journal of Biological Inorganic Chemistry 16: 1011-1024.

Cobbett, C.S. 2000. Phytochelatin biosynthesis and function in heavy-metal detoxification. Current Opinion in Plant Biology 3(3): 211-216.

Cobbett, C.S. & Goldsbrough, P. 2002. Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology 53: 159-182.

Eapen, S. & D’Souza, S.F. 2005. Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnology Advances 23(2): 97-114.

Foster, A.W. & Robinson, N.J. 2011. Promiscuity and preferences of metallothioneins: The cell rules. BMC Biology 9: 25.

Freisinger, E. 2011. Structural features specific to plant metallothioneins. Journal of Biological Inorganic Chemistry 16(7): 1035-1045.

Holm, L.G., Plucknett, D.L., Pancho, J.V. & Herberger, J.P. 1977. The World's Worst Weeds: Distribution and Biology. East West Center: The University Press of Hawaii, Honolulu p. 609.

Honarmand Ebrahimi, K., Hagedoorn, P.L. & Hagen, W.R. 2015. Unity in the biochemistry of the iron-storage proteins ferritin and bacterioferritin. Chemical Reviews 115(1): 295-326.

Hossain, S.T., Mallick, I. & Mukherjee, S.K. 2012. Cadmium toxicity in Escherichia coli: Cell morphology, Z-ring formation and intracellular oxidative balance. Ecotoxicology and Environmental Safety 86: 54-59.

Kozminska, A., Wiszniewska, A., Hanus Fajerska, E. & Muszynska, E. 2018. Recent strategies of increasing metal tolerance and phytoremediation potential using genetic transformation of plants. Plant Biotechnology Reports 12(1): 1-14.

Krezel, A. & Maret, W. 2017. The functions of metamorphic metallothioneins in zinc and copper metabolism. International Journal of Molecular Sciences 18: 1237-1257.

Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.

Lee, L.J. & Ngim, J. 2000. A first report of glyphosate-resistant goosegrass (Eleusine indica (L) Gaertn) in Malaysia. Pest Management Science 56: 336-339.

Leszczyszyn, O.I., Imam, H.T. & Blindauer, C.A. 2013. Diversity and distribution of plant metallothioneins: A review of structure, properties and functions. Metallomics 5(9): 1146-1169.

Ma, M., Lau, P.S., Jia, Y.T., Tsang, W.K., Lam, S.K.S., Tam, N.F.Y. & Wong, Y.S. 2003. The isolation and characterisation of Type 1 metallothionein (MT) cDNA from heavy-metal tolerant plant, Festuca rubra cv. Merlin. Plant Science 164: 51-60.

Mahajan, P. & Kaushal, J. 2018. Role of phytoremediation in reducing cadmium toxicity in soil and water. Journal of Toxicology 2018: 1-16.

Mishra, S. & Dubey, R.S. 2006. Heavy metal uptake and detoxification mechanisms in plants. International Journal of Agricultural Research 1(2): 122-141.

Moreau, J.L., Baudrimont, M., Carrier, P., Peltier, G. & Bourdineaud, J.P. 2008. Metal binding and antioxidant properties of chimeric tri- and tetra-domained metallothioneins. Journal of Biochemistry and Molecular Biology 90(5): 705-716.

Morris, C.A., Nicolaus, B., Sampson, V., Harwood, J.L. & Kille, P. 1999. Identification and characterization of a recombinant metallothionein protein from a marine alga, Fucus vesiculosus. Journal of Biochemistry 338: 553-560.

Mudalkar, S., Golla, R., Sengupta, D., Ghatty, S. & Reddy, A.R. 2014. Molecular cloning and characterisation of metallothionein type 2a gene from Jatropha curcas L., a promising biofuel plant. Molecular Biology Reports 41: 113-124.

Nezhad, R.M., Shahpiri, A. & Mirlohi, A. 2013. Discrimination between two rice metallothionein isoforms belonging to type 1 and type 4 in metal-binding ability. Biotechnology and Applied Biochemistry 60(3): 275-282.

Nik Marzuki, S., Roslina, M.Y., Che Radziah, C.M.Z. & Ismanizan, I. 2010. Transformation of metallothionein gene (eiMT1) from Eleusine indica into tobacco, Nicotiana tabacum by Agrobacterium tumefaciens. Sains Malaysiana 39(6): 927-933.

Nik Marzuki, S., Shaiful, A.S., Chin, I.S., Belinda, M.Y.S., Mushrifah, I., Shahrul Hisham, Z.A. & Shahidan, S. 2006. Molecular cloning and sequencing of metallothionein gene gene from Elusine indica. Malaysian Applied Biology 35: 71-74.

Pascal, M., Corso, M., Chanel, O., Declercq, C., Badaloni, C., Cesaroni, G., Henschel, S., Meister, K., Haluza, D., Martin-Olmedo, P. & Medina, S. 2013. Assessing the public health impacts of urban air pollution in 25 European cities: Results of the Aphekom project. Science of the Total Environment 49: 390-400.

Pilon-Smits, E. 2005. Phytoremediation. Annual Review of Plant Biology 56: 15-39.

Salam, M.A., Paul, S.C., Shaari, F.I., Rak, A.E., Ahmad, R.B. & Kadir, W.R. 2019. Geostatistical distribution and contamination status of heavy metals in the sediment of Perak River, Malaysia. Hydrology 6(2): 30. DOI:10.3390/hydrology6020030.

Sekhar, K., Priyanka, B., Reddy, V.D. & Rao, K.V. 2011. Metallothionein 1 (CcMT1) of pigeonpea (Cajanus cajan, L.) confers enhanced tolerance to copper and cadmium in Escherichia coli and Arabidopsis thaliana. Environmental and Experimental Botany 72: 131-139.

Shazili, N.A.M., Yunus, K., Ahmad, A.S., Abdullah, N. & Rashid, M.K.A. 2006. Heavy metal pollution status in the Malaysian aquatic environment. Aquatic Ecosystem Health 9: 137-145.

Shevchenko, A., Tomas, H., Havlis, J., Olsen, J.V. & Mann, M. 2006. In-gel digestion for mass spectrometric characterisation of proteins and proteomes. Nature Protocols 1(6): 2856-2860.

Shuhaimi-Othaman, M., Nadzifah, Y., Nur-Amalina, R. & Umairah, N.S. 2013. Deriving freshwater quality criteria for copper, cadmium, aluminum and manganese for protection of aquatic life in Malaysia. Chemosphere 90: 2631-2636.

Simes, D.C., Bebianno, M.J. & Moura, J.G. 2003. Isolation and characterisation of metallothionein from the clam Ruditapes decussatus. Aquatic Toxicology 63: 307-318.

Tarasava, K., Loebus, J. & Freisinger, E. 2016. Localization and spectroscopic analysis of the Cu(I) binding site in wheat metallothionein Ec-1. International Journal of Molecular Sciences 17: 371.

Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K. & Sutton, D.J. 2012. Heavy metal toxicity and the environment. Experientia Supplementum 101: 133-164.

Vanparys, C., Dauwe, T., Van Campenhout, K.V., Bervoets, L., De Coen, W., Blust, R. & Eens, M. 2008. Metallothionein (MTs) and δ-aminolevulinic acid dehydratase (ALAd) as biomarkers of metal pollution in great tits (Parus major) along a pollution gradient. Science of The Total Environment 401: 184-193.

Vasak, M. 2005. Advances in metallothionein structure and functions. Journal of Trace Elements in Medicine and Biology 19: 13-17.

Vasak, M. 1991. Metal removal and substitution in vertebrate and invertebrate metallothioneins. In Methods in Enzymology Metallochemistry, edited by Riodan, J.F. & Vallee, B.L. 205: 452-458.

Watson, H., Videvall, E., Andersson, M.N. & Isaksson, C. 2017. Transcriptome analysis of a wild bird reveals physiological responses to the urban environment. Scientific Reports 7: 44180.

Xia, Y., Lv, Y., Yuan, Y., Wang, G., Chen, Y., Zhang, H. & Shen, Z. 2012. Cloning and characterisation of a type 1 metallothionein gene from the copper-tolerant plant Elsholtzia haichowensis. Acta Physiologia Plantarum 34: 1819-1826.

Yang, Z., Wu, Y., Li, Y., Ling, H.L. & Chu, C. 2009. OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Molecular Biology 70: 219-229.

Ziller, A. & Fraissinet-Tachet, L. 2018. Metallothionein diversity and distribution in the tree of life: A multifunctional protein. Metallomics 10(11): 1549-1559.

 

*Corresponding author; email: roohaida@ukm.edu.my

 

 

 

 

 

previous