Sains Malaysiana
49(3)(2020): 527-536
http://dx.doi.org/10.17576/jsm-2020-4903-07
Metalotionein 1 daripada Eleusine indica L. Memberikan Toleransi terhadap Logam Berat dalam Escherichia coli
(Metallothionein 1 from Eleusine indica L. Confers Heavy Metal Tolerance
in Escherichia coli)
ROOHAIDA
OTHMAN1,2* & NORUL HUDA MOHD NASIR1
1Faculty of Science
and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Institute of Systems
Biology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received:
20 May 2019/Accepted: 5 December 2019
ABSTRAK
Metalotionein (MT) berpotensi besar dalam pemuliharaan
alam sekitar
disebabkan peranannya yang penting dalam metabolisme
dan penyahtoksikan
ion logam melalui proses pengkelatan ion logam. cDNA MT1
daripada Eleusine indica L. (eiMT1) telah diamplifikasi dan diekspreskan dalam Escherichia
coli. Pengekspresan
protein rekombinan diaruh
menggunakan 1 mM IPTG pada 37°C selama 4 jam. Protein
rekombinan dengan berat molekul 12 kDa telah diperoleh
dan ditulenkan
menggunakan dua kaedah penulenan iaitu kromatografi penukaran ion dan kromatografi penurasan gel. Analisis jujukan protein rekombinan telah mengesahkan bahawa protein eiMT yang diekspreskan mengandungi jujukan asid amino sebagaimana dijangkakan bagi protein yang dikodkan oleh cDNA eiMT1. Untuk menilai keupayaan protein eiMT ini memberikan
toleransi terhadap
logam berat bagi
E. coli, sel
bakteria yang ditransformasikan
dengan plasmid yang membawa
cDNA eiMT1 telah dikulturkan dalam media yang mengandungi ion
tembaga (Cu), zink (Zn), besi (Fe), kromium (Cr) dan kadmium (Cd). Sel yang mengekspres eiMT didapati menunjukkan
tahap pertumbuhan
yang lebih tinggi berbanding
sel jenis liar
di dalam media yang mengandungi kesemua ion logam serta mampu bermandiri
di dalam Cu, Zn, Fe dan
Cr sehingga kepekatan 500 µM manakala bagi Cd sehingga kepekatan logam 400 µM. Hasil kajian ini menunjukkan
bahawa eiMT
membolehkan peningkatan toleransi sel E. coli terhadap logam berat dan
memainkan peranan
penting dalam menyingkirkan
ion logam berlebihan.
Hal ini mencadangkan bahawa eiMT juga
kemungkinan mampu
melakukan penyahtoksikan ion logam berlebihan dalam E. indica. Oleh itu, sel E. coli yang membawa cDNA
eiMT
di samping tumbuhan E. indica sendiri boleh diaplikasikan
dalam proses remediasi
dengan menyerap logam berat dalam
persekitaran yang tercemar.
Kata kunci: Eleusine indica L.; logam berat; metalotionein; protein rekombinan; rumput sambau
Abstract
Metallothionein (MT) has a
huge potential
in environmental conservation due to its important
role in metal
ion metabolism and detoxification by chelating the metal ions. MT1 cDNA from Eleusine indica L. (eiMT1) was amplified
and expressed in Escherichia coli cells. Recombinant protein
expression was induced using 1 mM
IPTG at 37oC for 4 h. Recombinant protein with the molecular mass of 12 kDa was obtained and purified through two purification methods involving ion exchange chromatography
and gel filtration chromatography. Sequence analysis of the recombinant protein confirmed that the expressed eiMT protein contained amino acid sequence as expected for the
protein encoded by the eiMT1 cDNA. To evaluate the ability of this eiMT protein
to confer heavy metal tolerance in E. coli, the bacterial cells transformed
with the recombinant plasmids containing the eiMT1 cDNA were
grown in media
containing copper (Cu), zinc (Zn), iron (Fe), chromium (Cr) and
cadmium (Cd) ions. The eiMT-expressing
cells showed higher growth level compared to wild type cells in
media containing all metal ions and was able to survive in Cu, Zn,
Fe and Cr until 500 µM in concentration while for Cd until 400 µM.
These results showed that eiMT allowed
enhanced heavy metal tolerance in E. coli cells and played an important role in removing excess metal ions. This suggested that the eiMT protein might also be capable of detoxifying metal ions
in E. indica. Hence, both the E. coli cells
containing the eiMT cDNA as well as the E. indica plant itself
may be applied in remediation process by adsorbing heavy metals
in polluted environment.
Keywords:
Eleusine indica L.; goose grass;
heavy metal; metallothionein; recombinant protein
REFERENCES
Ali, H., Khan, E. & Ilahi,
I. 2019. Environmental chemistry and ecotoxicology of hazardous
heavy metals: Environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry 2019: 6730305.
Amiard, J.C., Amiard-Triquet, C., Barka, S., Pellerin, J. & Rainbow, P.S. 2006. Metallothioneins
in aquatic invertebrates: Their role in metal detoxification and
their use as biomarkers. Aquatic
Toxicology 76(2): 160-202.
Begg, S.L., Eijkelkamp,
B.A., Luo, Z., Couñago, R.M., Morey, J.R.,
Maher, M.J., Ong, C.Y., McEwan, A.G., Kobe, B., O’Mara, M.L., Paton,
J.C. & McDevitt, C.A. 2015. Dysregulation of transition metal
ion homeostasis is the molecular basis for cadmium toxicity in Streptococcus
pneumoniae. Nature
Communications 6: 6418.
Bennion, B.J. & Daggett,
V. 2003. The molecular basis for the chemical denaturation of proteins
by urea. Proceedings of the
National Academy of Science 100(9): 5142-5147.
Blindauer, C.A. 2011. Bacterial
metallothioneins: Past, present, and questions
for the future. Journal of
Biological Inorganic Chemistry 16: 1011-1024.
Cobbett,
C.S. 2000. Phytochelatin biosynthesis
and function in heavy-metal detoxification. Current
Opinion in Plant Biology 3(3): 211-216.
Cobbett,
C.S. & Goldsbrough, P. 2002. Phytochelatins
and metallothioneins: Roles in heavy metal
detoxification and homeostasis. Annual
Review of Plant Biology 53: 159-182.
Eapen, S. & D’Souza, S.F. 2005. Prospects
of genetic engineering of plants for phytoremediation of toxic metals.
Biotechnology Advances
23(2): 97-114.
Foster,
A.W. & Robinson, N.J. 2011. Promiscuity and preferences of metallothioneins: The cell rules. BMC Biology 9: 25.
Freisinger, E. 2011. Structural
features specific to plant metallothioneins.
Journal of Biological Inorganic
Chemistry 16(7): 1035-1045.
Holm,
L.G., Plucknett, D.L., Pancho,
J.V. & Herberger, J.P. 1977. The World's Worst Weeds: Distribution and Biology. East West Center:
The University Press of Hawaii, Honolulu p. 609.
Honarmand Ebrahimi, K., Hagedoorn, P.L. &
Hagen, W.R. 2015. Unity in the biochemistry of the iron-storage
proteins ferritin and bacterioferritin.
Chemical Reviews 115(1): 295-326.
Hossain,
S.T., Mallick, I. & Mukherjee, S.K.
2012. Cadmium toxicity in Escherichia
coli: Cell morphology, Z-ring formation and intracellular oxidative
balance. Ecotoxicology and Environmental Safety
86: 54-59.
Kozminska, A., Wiszniewska, A., Hanus Fajerska, E. & Muszynska, E.
2018. Recent strategies of increasing metal tolerance and phytoremediation
potential using genetic transformation of plants. Plant Biotechnology Reports 12(1): 1-14.
Krezel, A. & Maret, W. 2017. The functions of metamorphic metallothioneins in zinc and copper metabolism. International Journal of Molecular Sciences
18: 1237-1257.
Laemmli, U.K. 1970. Cleavage
of structural proteins during the assembly of the head of bacteriophage
T4. Nature 227: 680-685.
Lee,
L.J. & Ngim, J. 2000. A first report
of glyphosate-resistant goosegrass (Eleusine indica (L) Gaertn)
in Malaysia. Pest Management
Science 56: 336-339.
Leszczyszyn, O.I., Imam, H.T.
& Blindauer, C.A. 2013. Diversity
and distribution of plant metallothioneins:
A review of structure, properties and functions. Metallomics 5(9): 1146-1169.
Ma,
M., Lau, P.S., Jia, Y.T., Tsang, W.K.,
Lam, S.K.S., Tam, N.F.Y. & Wong, Y.S. 2003. The isolation and
characterisation of Type 1 metallothionein
(MT) cDNA from heavy-metal tolerant plant, Festuca rubra cv. Merlin.
Plant Science 164: 51-60.
Mahajan,
P. & Kaushal, J. 2018. Role of phytoremediation
in reducing cadmium toxicity in soil and water. Journal of Toxicology 2018: 1-16.
Mishra,
S. & Dubey, R.S. 2006. Heavy metal uptake and detoxification
mechanisms in plants. International
Journal of Agricultural Research 1(2): 122-141.
Moreau,
J.L., Baudrimont, M., Carrier, P., Peltier,
G. & Bourdineaud, J.P. 2008. Metal binding and antioxidant properties
of chimeric tri- and tetra-domained metallothioneins. Journal
of Biochemistry and Molecular Biology 90(5): 705-716.
Morris,
C.A., Nicolaus, B., Sampson, V., Harwood, J.L. & Kille,
P. 1999. Identification and characterization of a recombinant metallothionein protein from a marine alga, Fucus vesiculosus.
Journal of Biochemistry 338: 553-560.
Mudalkar, S., Golla, R., Sengupta, D., Ghatty, S. & Reddy, A.R. 2014. Molecular cloning and characterisation of metallothionein
type 2a gene from Jatropha
curcas L., a promising biofuel plant. Molecular Biology Reports 41: 113-124.
Nezhad, R.M., Shahpiri, A. & Mirlohi, A. 2013.
Discrimination between two rice metallothionein
isoforms belonging to type 1 and type 4 in metal-binding ability.
Biotechnology and Applied Biochemistry
60(3): 275-282.
Nik Marzuki, S., Roslina, M.Y., Che Radziah, C.M.Z. & Ismanizan, I. 2010. Transformation of metallothionein
gene (eiMT1)
from Eleusine indica
into tobacco, Nicotiana
tabacum by Agrobacterium tumefaciens.
Sains Malaysiana 39(6):
927-933.
Nik Marzuki, S., Shaiful, A.S., Chin, I.S., Belinda, M.Y.S., Mushrifah, I., Shahrul Hisham, Z.A. & Shahidan, S.
2006. Molecular cloning and sequencing of metallothionein
gene gene from Elusine
indica. Malaysian Applied Biology 35: 71-74.
Pascal,
M., Corso, M., Chanel, O., Declercq, C.,
Badaloni, C., Cesaroni, G., Henschel, S., Meister, K., Haluza,
D., Martin-Olmedo, P. & Medina, S.
2013. Assessing the public health impacts of urban air pollution
in 25 European cities: Results of the Aphekom
project. Science of the Total Environment 49: 390-400.
Pilon-Smits, E. 2005. Phytoremediation.
Annual Review of Plant Biology 56: 15-39.
Salam, M.A., Paul, S.C., Shaari,
F.I., Rak, A.E., Ahmad, R.B. & Kadir, W.R. 2019. Geostatistical
distribution and contamination status of heavy metals in the sediment
of Perak
River, Malaysia. Hydrology 6(2): 30. DOI:10.3390/hydrology6020030.
Sekhar, K., Priyanka, B.,
Reddy, V.D. & Rao, K.V. 2011. Metallothionein
1 (CcMT1) of pigeonpea (Cajanus cajan, L.) confers enhanced tolerance to
copper and cadmium in Escherichia
coli and Arabidopsis thaliana.
Environmental and Experimental Botany 72:
131-139.
Shazili, N.A.M., Yunus, K., Ahmad, A.S., Abdullah, N. & Rashid, M.K.A.
2006. Heavy metal pollution status in the Malaysian aquatic environment.
Aquatic Ecosystem Health 9: 137-145.
Shevchenko,
A., Tomas, H., Havlis, J., Olsen, J.V.
& Mann, M. 2006. In-gel digestion for mass spectrometric characterisation
of proteins and proteomes. Nature
Protocols 1(6): 2856-2860.
Shuhaimi-Othaman, M., Nadzifah, Y., Nur-Amalina, R. &
Umairah, N.S. 2013. Deriving freshwater
quality criteria for copper, cadmium, aluminum and manganese for
protection of aquatic life in Malaysia. Chemosphere
90: 2631-2636.
Simes, D.C., Bebianno,
M.J. & Moura, J.G. 2003. Isolation and characterisation
of metallothionein from the clam Ruditapes decussatus. Aquatic Toxicology 63: 307-318.
Tarasava, K., Loebus, J. & Freisinger, E.
2016. Localization and spectroscopic analysis of the Cu(I) binding
site in wheat metallothionein Ec-1.
International Journal of Molecular Sciences
17: 371.
Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K. &
Sutton, D.J. 2012. Heavy metal toxicity and the environment. Experientia Supplementum
101: 133-164.
Vanparys, C., Dauwe, T., Van Campenhout, K.V.,
Bervoets, L., De Coen, W., Blust,
R. & Eens, M. 2008. Metallothionein
(MTs) and δ-aminolevulinic acid dehydratase
(ALAd) as biomarkers of metal pollution in great tits (Parus major) along a pollution gradient. Science of The Total Environment 401: 184-193.
Vasak, M. 2005. Advances in metallothionein structure and functions. Journal of Trace Elements in Medicine and Biology
19: 13-17.
Vasak, M. 1991. Metal removal and substitution
in vertebrate and invertebrate metallothioneins.
In Methods in Enzymology Metallochemistry, edited by Riodan, J.F. & Vallee, B.L. 205: 452-458.
Watson,
H., Videvall, E., Andersson,
M.N. & Isaksson, C. 2017. Transcriptome analysis of a wild bird
reveals physiological responses to the urban environment. Scientific Reports 7: 44180.
Xia,
Y., Lv, Y., Yuan, Y., Wang, G., Chen,
Y., Zhang, H. & Shen, Z. 2012. Cloning and characterisation
of a type 1 metallothionein gene from
the copper-tolerant plant Elsholtzia haichowensis.
Acta Physiologia Plantarum 34: 1819-1826.
Yang,
Z., Wu, Y., Li, Y., Ling, H.L. &
Chu, C. 2009. OsMT1a, a type 1 metallothionein,
plays the pivotal role in zinc homeostasis and drought tolerance
in rice. Plant Molecular Biology 70: 219-229.
Ziller, A. & Fraissinet-Tachet, L. 2018. Metallothionein
diversity and distribution in the tree of life: A multifunctional
protein. Metallomics 10(11):
1549-1559.
*Corresponding
author; email: roohaida@ukm.edu.my
|