Sains Malaysiana 49(3)(2020):
537-544
http://dx.doi.org/10.17576/jsm-2020-4903-08
Computational Quest for Finding Potential Ebola
VP40 Inhibitors: A Molecular Docking Study
(Pencarian
Pengiraan untuk
Mencari Potensi Perencat Ebola VP40: Suatu Kajian
Mengedok Molekul)
MOHAMAD
ARIFF MOHAMAD YUSSOFF1, AZZMER AZZAR ABD HAMID1,3,
SHAFIDA ABD HAMID2 & KHAIRUL BARIYYAH ABD HALIM1,3*
1Department of Biotechnology,
Kulliyyah of Science, International Islamic
University Malaysia, 25200 Kuantan, Pahang Darul Makmur,
Malaysia
2Department of Chemistry,
Kulliyyah of Science, International Islamic
University Malaysia, 25200 Kuantan, Pahang Darul Makmur,
Malaysia
3Research Unit for Bioinformatics
and Computational Biology, Kulliyyah of
Science, International Islamic University Malaysia, 25200 Kuantan,
Pahang Darul Makmur, Malaysia
Received: 1 August 2019/Accepted: 5 December 2019
ABSTRACT
Interaction
of Ebola virus matrix protein VP40 with RNA is crucial in the early
infection stage to facilitate the transcription of the viral gene.
Thus, VP40 is a promising target to inhibit the Ebola virus from
spreading. This study aims to identify and optimize ligands that
can potentially block the VP40-RNA binding site. A total of 42 compounds
from previously studied ligands from the literature were simulated
against the RNA binding site using Autodock Vina. The top ten ligands
were used as templates for similarity search in ZINC database followed
by structured-based virtual screening. Then, the ADME properties
of the top compounds were predicted computationally using SwissADME
server. Our results showed that Q-96 (ZINC ID: 1338855) is the best
docked compound with binding free energy of -7.5 kcal/mol. The compound
also has satisfactory ADME properties prediction with good lipophilicity
value, moderate water solubility and high gastrointestinal absorption.
Besides, this ligand does not violate any drug likeness rules as
well as no PAINS and Brenk alerts, indicate it has the properties as a drug. Thus,
it is worth to carry out further investigations on this structure
more in silico as
well as in vitro and in vivo levels towards finding
the treatment for Ebola virus disease.
Keywords: ADME;
Ebola virus; molecular docking: VP40
matrix protein
ABSTRAK
Interaksi matriks virus Ebola VP40 dengan
RNA adalah penting
dalam peringkat jangkitan awal untuk memudahkan transkripsi gen virus. Oleh itu,
VP40 adalah sasaran
yang sesuai bagi menghalang
virus Ebola daripada terus
merebak. Kajian ini bertujuan
untuk mengenal pasti dan mengoptimumkan
ligan yang berpotensi
menghalang tapak pengikat VP40-RNA. Sejumlah 42 sebatian
daripada kajian
terdahulu telah disimulasi di tapak pengikat RNA menggunakan Autodock Vina. Sepuluh ligan terbaik telah
dipilih sebagai
templat pencarian persamaan dalam pangkalan data ZINC diikuti oleh penyaringan maya berasaskan struktur. Ciri-ciri ADME sebatian telah
diramalkan secara
komputasi menggunakan pelayan SwissADME. Keputusan kajian kami menunjukkan bahawa Q-96 (ZINC ID:
1338855) adalah sebatian
terbaik dengan tenaga bebas pengikat
-7.5 kcal/mol. Sebatian ini
juga menunjukkan sifat ADME
yang memuaskan dengan
nilai kelipofilikan yang baik, kelarutan air secara sederhana dan penyerapan gastrousus yang tinggi. Selain itu, ligan
ini tidak melanggar sebarang hukum persamaan drug juga tidak memberi sebarang
amaran PAINS dan
Brenk, menjustifikasikan ia mempunyai
ciri-ciri sebagai
drug. Oleh itu, adalah wajar
untuk menjalankan
kajian lanjutan yang lebih dalam mengenai
struktur ini
secara in silico, in vitro
dan in vivo ke arah pencarian
rawatan terhadap
penyakit virus Ebola.
Kata kunci: ADME; cantuman molekul; protein matriks VP40; virus Ebola
REFERENCES
Abazari, D., Moghtadaei,
M., Behvarmanesh, A., Ghannadi, B., Aghaei, M., Behruznia, M. &
Rigi, G. 2015. Molecular docking based screening of predicted potential
inhibitors for VP40 from Ebola virus. Bioinformation
11: 243-247.
Adu-Gyamfi, E.,
Digman, M.A., Gratton, E. & Stahelin, R.V. 2012. Investigation
of Ebola VP40 assembly and oligomerization in live cells using number
and brightness analysis. Biophys.
J. 102: 2517-2525.
Adu-Gyamfi, E.,
Johnson, K.A., Fraser, M.E., Scott, J.L., Soni, S.P., Jones, K.R.,
Digman, M.A., Gratton, E., Tessier, C.R. & Stahelin, R.V. 2015.
Host cell plasma membrane phosphatidylserine regulates the assembly
and budding of Ebola virus. J. Virol. 89: 9440-9453.
Akers, M.J. 2002.
Excipient-drug interactions
in parenteral formulations. J.
Pharm. Sci. 91: 2283-2300.
Arnott, J.A. &
Planey, S.L. 2012. The influence of lipophilicity in drug discovery
and design. Expert Opin. Drug
Discov. 7: 909-921.
Baell, J.B. &
Holloway, G.A. 2010. New substructure filters for removal of pan
assay interference compounds (PAINS) from screening libraries and
for their exclusion in bioassays. J.
Med. Chem. 53: 2719-2740.
Booth, T.F., Rabb,
M.J. & Beniac, D.R. 2013. How do filovirus filaments bend without
breaking? Trends Microbiol.
21: 583-593.
Bornholdt, Z.A.,
Noda, T., Abelson, D.M., Halfmann, P., Wood, M.R., Kawaoka, Y. &
Saphire, E.O. 2013. Structural rearrangement of Ebola virus VP40
begets multiple functions in the virus life cycle. Cell
154: 763-774.
Brenk, R., Schipani,
A., James, D., Krasowski, A., Gilbert, I.H., Frearson, J. &
Wyatt, P.G. 2008. Lessons learnt from assembling screening libraries
for drug discovery for neglected diseases. ChemMedChem.
3: 435-444.
Castro-Alvarez,
A., Costa, A.M. & Vilarrasa, J. 2017. The performance of several
docking programs at reproducing protein-macrolide-like crystal structures.
Molecules 22: 1-14.
Clark, D.E. 2011.
What has polar surface area ever done for drug discovery? Future Med. Chem. 3: 469-484.
Daina, A., Michielin,
O. & Zoete, V. 2017. SwissADME: A free web tool to evaluate
pharmacokinetics, drug-likeness and medicinal chemistry friendliness
of small molecules. Sci. Rep.
7: 42717.
Del Vecchio, K.,
Frick, C.T., Gc, J.B., Oda, S., Gerstman, B.S., Saphire, E.O., Chapagain,
P.P. & Stahelin, R.V. 2018. A cationic, C-terminal patch and
structural rearrangements in Ebola virus matrix VP40 protein control
its interactions with phosphatidyserine. J.
Biol. Chem. 293: 3335-3349.
Egan, W.J., Merz,
K.M. & Baldwin, J.J. 2000. Prediction of drug absorption using
multivariate statistics. J.
Med. Chem. 43: 3867-3877.
Fabozzi, G., Nabel,
C.S., Dolan, M.A. & Sullivan, N.J. 2011. Ebola virus proteins
suppress the effects of small interfering RNA by direct interaction
with the mammalian RNA interference pathway. J.
Virol. 85: 2512-2523.
Feldmann, H. &
Geisbert, T.W. 2011. Ebola haemorrhagic fever. Lancet. 377: 849-862.
Gc, J.B., Gerstman, B.S. & Chapagain, P.P. 2017.
Membrane association and localization dynamics of the Ebola virus
matrix protein VP40. Biochim.
Biophys. Acta - Biomembr. 1859: 2012-2020.
Ghose, A.K., Viswanadhan,
V.N. & Wendoloski, J.J. 1999. A knowledge-based approach in
designing combinatorial or medicinal chemistry libraries for drug
discovery. 1. A qualitative and quantitative characterization of
known drug databases. J. Comb. Chem. 1: 55-68.
Gleeson, M.P. 2008.
Generation of a set of simple, interpretable ADMET rules of thumb.
J. Med. Chem. 51: 817-834.
Gomis-Rüth, F.X.,
Dessen, A., Timmins, J., Bracher, A., Kolesnikowa, L., Becker, S.,
Klenk, H.D. & Weissenhorn, W. 2003. The matrix protein VP40
from Ebola virus octamerizes into pore-like structures with specific
RNA binding properties. Structure 11: 423-433.
Gonzalez, J.P.,
Wauquier, N. & Vincent, T. 2018. Revisiting Ebola, a quiet river
in the heart of Africa. Med.
Sante Trop. 28: 12-17.
Gupta, U., Agashe,
H.B., Asthana, A. & Jain, N.K. 2006. Dendrimers: Novel polymeric
nanoarchitectures for solubility enhancement. Biomacromolecules 7: 649-658.
Hoenen, T., Volchkov,
V., Kolesnikova, L., Mittler, E., Timmins, J., Ottmann, M., Reynard,
O., Becker, S. & Weissenhorn, W. 2005. VP40 octamers are essential
for Ebola virus replication. J.
Virol. 79: 1898-1905.
Jasenosky, L.D.,
Neumann, G., Lukashevich, I. & Kawaoka, Y. 2001. Ebola virus
VP40-induced particle formation and association with the lipid bilayer.
J. Virol. 75: 5205-5214.
Johnson, K.A.,
Taghon, G.J.F., Scott, J.L. & Stahelin, R.V. 2016. The Ebola
virus matrix protein, VP40, requires phosphatidylinositol 4,5-bisphosphate
(PI(4,5)P2) for extensive oligomerization at the plasma membrane
and viral egress. Sci. Rep. 6: 19125.
Karthick, V., Nagasundaram,
N., Doss, C.G.P., Chakraborty, C., Siva, R., Lu, A., Zhang, G. &
Zhu, H. 2016. Virtual screening of the inhibitors targeting at the
viral protein 40 of Ebola virus. Infect.
Dis. Poverty 5: 12. Doi: 10.1186/s40249-016-0105-1.
Li, H., Leung,
K.S., Wong, M.H. & Ballester, P.J. 2016. USR-VS: A web server
for large-scale prospective virtual screening using ultrafast shape
recognition techniques. Nucleic
Acids Res. 44: W436-W441.
Lipinski, C. 2002.
Poor aqueous solubility - An
industry wide problem in drug discovery. Am.
Pharm. Rev. 5: 82-85.
Lipinski, C.A.,
Lombardo, F., Dominy, B.W. & Feeney, P.J. 1997. Experimental
and computational approaches to estimate solubility and permeability
in drug discovery and development settings. Adv.
Drug Deliv. Rev. 46: 3-26.
M Alam El-Din,
H., A Loutfy, S., Fathy, N., H Elberry, M., M Mayla, A., Kassem,
S. & Naqvi, A. 2016. Molecular docking based screening of compounds
against VP40 from Ebola virus. Bioinformation
12: 192-196.
Martin, B., Canard,
B. & Decroly, E. 2017. Filovirus proteins for antiviral drug
discovery: Structure/function bases of the replication cycle. Antiviral Res. 141: 48-61.
Martin, B., Hoenen,
T., Canard, B. & Decroly, E. 2016. Filovirus proteins for antiviral
drug discovery: A structure/function analysis of surface glycoproteins
and virus entry. Antiviral
Res. 135: 1-14.
Mirza, M.U. &
Ikram, N. 2016. Integrated computational approach for virtual hit
identification against Ebola viral proteins VP35 and VP40. Int. J. Mol. Sci. 17(11): 1748.
Muegge, I., Heald,
S.L. & Brittelli, D. 2001. Simple selection criteria for drug-like
chemical matter. J. Med. Chem.
44: 1841-1846.
Olejnik, J., Ryabchikova,
E., Corley, R.B. & Mühlberger, E. 2011. Intracellular events
and cell fate in filovirus infection. Viruses
3: 1501-1531.
Raj, U. & Varadwaj,
P.K. 2016. Flavonoids as multi-target inhibitors for proteins associated
with Ebola virus: In silico discovery using virtual screening
and molecular docking studies. Interdiscip.
Sci. Comput. Life Sci. 8: 132-141.
Ruigrok, R.W.,
Schoehn, G., Dessen, A., Forest, E., Volchkov, V., Dolnik, O., Klenk,
H.D. & Weissenhorn, W. 2000. Structural characterization and
membrane binding properties of the matrix protein VP40 of Ebola
virus. J. Mol. Biol. 300: 103-112.
Schreyer, A.M.
& Blundell, T. 2012. USRCAT: Real-time ultrafast shape recognition
with pharmacophoric constraints. J.
Cheminform. 4: 27.
Serajuddin, A.T.M.
2007. Salt formation to improve drug solubility. Adv. Drug Deliv. Rev. 59: 603-616.
Setlur, A.S., Naik,
S.Y. & Skariyachan, S. 2017. Herbal lead as ideal bioactive
compounds against probable drug targets of Ebola virus in comparison
with known chemical analogue: A computational drug discovery perspective.
Interdiscip. Sci. Comput. Life Sci. 9: 254-277.
Shah, R., Panda,
P.K., Patel, P., Mumbai, N., Farm, A. & Road, G.D. 2015. Pharmacophore
based virtual screening and molecular docking studies of inherited
compounds against Ebola virus receptop proteins. World
J. Pharm. Pharm. Sci. 4: 1268-1282.
Strickley, R.G.
2004. Solubilizing excipients in oral and injectable formulations.
Pharm. Res. 21: 201-230.
Tamilvanan, T.
& Hopper, W. 2013. High-throughput virtual screening and docking
studies of matrix protein VP40 of Ebola virus. Bioinformation
9: 286-292.
Taylor, R.D., Maccoss,
M. & Lawson, A.D.G. 2014. Rings in drugs. J. Med. Chem. 57: 5845-5859.
Trott, O. &
Olson, A.J. 2009. Software news and update AutoDock Vina: Improving
the speed and accuracy of docking with a new scoring function, efficient
optimization, and multithreading. J.
Comput. Chem. 31: 455-461.
Van de Waterbeemd, H., Smith, D.A., Beaumont, K. & Walker,
D.K. 2001. Property-based design: Optimization of drug absorption
and pharmacokinetics. J. Med.
Chem. 44: 1313-1333.
Veber, D.F., Johnson,
S.R., Cheng, H., Smith, B.R., Ward, K.W. & Kopple, K.D. 2002.
Molecular properties that influence the oral bioavailability of
drug candidates. J. Med. Chem.
45: 2615-2623.
Vyas, A., Saraf,
Shailendra. & Saraf, Swarnlata. 2008. Cyclodextrin based novel
drug delivery systems. J.
Incl. Phenom. Macrocycl. Chem. 62: 23-42.
WHO | Ebola Situation
Reports: Democratic Republic of the Congo, 2019.
WHO | Ebola Virus
Disease 2017.
Yang, J., Roy,
A. & Zhang, Y. 2013a. Protein-ligand binding site recognition
using complementary binding-specific substructure comparison and
sequence profile alignment.
Bioinformatics 29: 2588-2595.
Yang, J., Roy,
A. & Zhang, Y. 2013b. BioLiP: A semi-manually curated database
for biologically relevant ligand-protein interactions. Nucleic Acids Res. 41: 1096-1103.
Yuan, S. 2015.
Possible FDA-approved drugs to treat Ebola virus infection. Infect. Dis. Poverty 4: 23.
*Corresponding author; email: kbariyyah@iium.edu.my
|