Sains Malaysiana
49(3)(2020): 545-552
http://dx.doi.org/10.17576/jsm-2020-4903-09
Production and Characterization
of Spray-Dried Swamp Eel (Monopterus
albus) Protein Hydrolysate
Prepared by Papain
(Pengeluaran dan
Pencirian Hidrolisat Protein Belut Paya
Semburan Kering (Monopterus albus) disediakan melalui
Papain)
SRI PRIATNI1*, KEZIA HARIMADI2, EFENDI BUANA2, WAWAN KOSASIH1
& ROHMATUSSOLIHAT ROHMATUSSOLIHAT3
1Research Unit for Clean Technology, Indonesian Institute of Sciences, Indonesia
2Surya University, Indonesia
3Research Center for Biotechnology LIPI, Indonesia
Received: 2 September 2019/Accepted: 5 December
2019
ABSTRACT
Protein
hydrolysate from swamp eel (Monopterus albus) has been prepared by enzymatic hydrolysis process
using papain enzyme. Evaluation of the extent of protein hydrolysis
was conducted by measuring the degree of hydrolysis (DH). The optimization
of protein hydrolysate production has been carried out by analyzing
the influences of papain enzyme concentration, temperature, and
time of hydrolysis on the degree of hydrolysis (DH) using RSM design.
The optimized product was spray-dried and analyzed the proximate
(moisture, lipid, protein) content and the yield (%). The fish protein
hydrolysate (FPH) powder product was characterized by the foaming
capacity and stability, and also by FTIR, DSC and PSA methods. The
optimum condition of enzymatic hydrolysis of swamp eel protein was
obtained by an addition 0.49 % of papain enzyme at 45oC
for 9 hours. The degree of hydrolysis (DH) of this product was 7.96
% with a yield of 14.72 %. The foaming capacity of swamp eel protein
hydrolysate powder was between 12.5 - 62.5 % and the foaming stability
was between 3.22 - 31.25 %. The highest foaming capacity and stability
of this product was reached at pH 4.0. Based on the spectrum FTIR
analysis, the FPH product contained amines, aromatics, aliphatics,
amide B and amide II groups. DSC analysis of the FPH product showed
two peaks (Tm) at 65 oC and
108.5 oC. The particle size
of the FPH powder product was distributed within 100 nm-1500 nm range with
the highest intensity was 8.91 %. This study shows the potential
usage of swamp eel for the production of FPH by enzymatic hydrolysis
using papain enzyme with high yield and serves as a protein supplement.
Keywords: Monopterus albus; papain; protein hydrolysate
Abstrak
Hidrolisat protein daripada belut paya (Monopterus albus) telah disediakan melalui proses hidrolisis enzim dengan menggunakan enzim papain. Penilaian tahap hidrolisis
protein telah dijalankan
dengan mengukur darjah hidrolisis (DH). Pengoptimuman pengeluaran hidrolisat protein telah dijalankan dengan menganalisis kepekatan enzim papain, suhu dan masa hidrolisis
pada darjah
hidrolisis (DH) menggunakan reka bentuk RSM. Produk yang dioptimumkan adalah sembur-kering dan analisis kandungan proksimat serta hasil (%). Produk serbuk protein hidrolisat
(FPH) dicirikan melalui
kapasiti buih dan
kestabilan serta
kaedah FTIR, DSC dan PSA.
Keadaan yang optimum
untuk enzim
hidrolisis daripada protein belut paya diperoleh
dengan penambahan
0.49 % enzim papain pada 45 oC untuk 9 jam.
Darjah
hidrolisis (DH) produk ini adalah 7.96 % dengan hasil sebanyak
14.72 %. Kapasiti buih serbuk hidrolisat protein belut paya adalah antara
12.5-62.5 % dan kestabilan
buih adalah antara
3.22-31.25 %. Kapasiti buih tertinggi
dan kestabilan
produk ini telah
dicapai pada
pH4.0. Berdasarkan analisis spektrum FTIR, produk FPH mengandungi kumpulan amina, aromatik, alifatik, amida B dan amida
II. Analisis DSC produk FPH menunjukkan
dua puncak (Tm)
pada 65 oC dan 108.5 oC.
Saiz zarah produk serbuk
FPH diagihkan dalam
julat lingkungan 100 nm-1500 nm
dengan keamatan tertinggi adalah pada 8.91 %. Kajian ini menunjukkan
potensi penggunaan
belut paya untuk
pengeluaran FPH melalui
hidrolisis enzim menggunakan enzim papain dengan hasil yang tinggi dan berfungsi
sebagai protein tambahan.
Kata
kunci: Hidrolisat
protein; Monopterus albus; papain
REFERENCES
Amri, E. & Mamboya,
F. 2012. Papain, a
plant enzyme of biological importance: A review. American
Journal of Biochemistry and Biotechnology 8(2): 99-104.
Annisa, S., Sastro, Y. & Amalia,
U. 2017. The effect of various fish species on fish protein hydrolysate with
the addition of papain enzyme. Indonesian
Journal of Fisheries Science and Technology 13(1): 24-30.
AOAC. 1995. Official Methods of Analysis of the Association
Official Analytical Chemistry. Washington DC.
Carić, M. 1994. Concentrated and Dried Dairy Products.
New York: VCH Publishers Inc.
Chabanon, G., Chevalot, I., Framboisier, X., Chenu, S. &
Marc, I. 2007. Hydrolysis of rapeseed protein isolates: Kinetics,
characterization and functional properties of hydrolysates. Process Biochemistry 42: 1419-1428.
Fallah, M., Bahram, S. & Javadian,
S.R. 2015. Fish
peptone development using enzymatic hydrolysis of silver carp by-products
as a nitrogen source in Staphylococcus aureus media.
Food Science & Nutrition 2: 153-157.
Gill,
P., Moghadam, T.T. & Ranjbar,
B. 2010. Differential scanning calorimetry
techniques: Applications in biology and nanoscience. J. Biomol.
Tech. 21(4):
167-193.
Halim, N.R.A. & Sarbon, N.M. 2019.
Characterization of Asian swamp eel (monopterus
sp.) protein hydrolysate functional properties prepared using
alcalase enzyme. Food
Research. https://www.researchgate.net/publication/291287080_Optimization_of_enzymatic_hydrolysis_condition_and_functional_properties_of_eel_Monopterus_sp_protein_using_response_surface_methodology_RSM.
Halim,
N.R.A. & Sarbon, N.M. 2017.
A response surface approach on hydrolysis condition of eel (Monopterus sp.) protein hydrolysate with antioxidant activity. International Food Research Journal 24(6):
1081-1093.
Hassan, A., Martin, R.P.D.K.A.,
Subodh, X., Binaya,
G. & Nayak, B. 2019. Evaluation of
the properties of spray dried visceral protein hydrolysate from
Pangasianodon hypophthalmus
(Sauvage, 1978) extracted by enzymatic
and chemical methods. Waste and Biomass Valorization 10(9): 2547-2558.
Heller, M.C., Carpenter,
J.F. & Randolph, T.W. 1999. Protein formulation and lyophilization
cycle design: Prevention of damage due to freeze-concentration induced
phase separation. Biotechnology and Bioengineering 63(2):
166-174. DOI: 10.1002/(SICI)1097-0290(19990420) 63:23.0.CO;2-H.
Hilles, A.R. 2018. Classification of Asian
swamp eel species. Current
Trends in Biomedical Engineering & Biosciences DOI: 10.19080/CTBEB.2018.15.555901.
John, H., Mansuri,
S.M., Giri, S.K. & Sinha, L.K. 2018. Rheological properties and particle size distribution
of soy protein isolate as affected by drying methods. Nutrition & Food Science International
Journal 7(5). DOI: 10.19080/NFSIJ.2018.07.555721.
Kain, R.J., Chen, Z., Sonda, T.S. & Kpawoh, J.C.A. 2009. Study on the effects of enzymatic
hydrolysis on the physical, functional and chemical properties of
peanut protein isolates extracted from
defatted heat pressed peanut meal flour (Arachis
hypogaea L.).
Pakistan Journal of Nutrition 8(6): 818-825.
Kempka, A.P. & Prestes, R.C.
2015. Foaming and emulsifying capacity, foam and emulsion stability of proteins
of porcine blood: Determination at different values of pH and concentrations.
Revista Brasileira de Tecnologia Agroindustrial 9(1): 1797-1809.
Lee, G. 2002. Spray-drying of proteins. In Rational Design of Stable Protein
Formulations, vol. 12, edited by Carpenter, J.F. & Manning,
M.C. Springer: Pharmaceutical Biotechnology. pp. 135-158.
Levitsky, D.I., Pivovarova, A.V., Mikhailova, V.V. & Nikolaeva,
O.P. 2008. Thermal
unfolding and aggregation of actin stabilization and destabilization of actin
filaments. FEBS Journal
275: 4280-4295.
Mohammed B.A.G. Al-bahri, Safa A. Al-Naimi. & Sundus H. Ahammed.
2009. The optimum conditions for production of soya peptone by acidic
hydrolysis of soya proteins. Al-Khwarizmi
Engineering Journal 5(1): 1-19.
Naqash, S.Y. & Nazeer, R.A. 2013.
Antioxidant and functional properties of protein hydrolysates from
pink perch (Nemipterus japonicus)
muscle. J. Food Sci. Technol. 50(10): 972-978.
Prabha, J., Vincent, S., Joseph, S. & Magdalene, J. 2016.
Bioactive and functional properties of fish protein
hydrolysate from Leiognathus bindus.
Asian J.
Pharm. Clin. Res.
9(5): 5-9.
Priatni, S., Kosasih, W., Budiwati, T.A. &
Ratnaningrum, D. 2016. Production
of peptone from boso fish (Oxyeleotris marmorata) for bacterial growth medium.
IOP Conference Series: Earth and Environmental Science 60:
012009.
Ren,
J., Wang, H., Zhao, M., Cui, C. & Hu, X. 2010. Enzymatic hydrolysis of grass carp
myofibrillar protein and antioxidant properties of hydrolysates.
Czech J. Food Sci. 28(6):
475-484.
Rosli, N. & Sarbon, N.M. 2015. Physicochemical and structural properties of Asian swamp
eel (Monopterus albus)
skin gelatin as compared to bovine gelatin. International
Food Research Journal 22(2): 699-706.
Salwanee, S., Wan Aida, W.M., Mamot,
S.,
Maskat, M.Y. & Ibrahim, S. 2013. Effects of enzyme concentration,
temperature, pH and time on the degree of hydrolysis of protein
extract from viscera of tuna (Euthynnus
affinis) by using alcalase.
Sains Malaysiana 42(3):
279-287.
Samsudin, N.A., Halim, N.R.A. & Sarbon, N.M. 2018. pH levels effect on functional
properties of different molecular weight eel (Monopterus
sp.) protein hydrolysate. Journal
of Food Science and Technology 55(11):
4608-4614.
Saputra, D. & Nurhayati, T. 2013.
Production of fish hydrolysates protein from waste
of fish carp (Cyprinus carpio) by enzymatic hydrolysis material fish hydrolysates
protein procedure specific activity of papain (Suhandana,
2010). ComTech. 2012: 11-18.
Trivedi, M.K., Branton, A., Trivedi, D., Nayak,
G., Singh, R. & Jana, S. 2015. Physical, spectroscopic and thermal
characterization of biofield treated fish
peptone. European Journal of Biophysics 3(6): 51-58.
Wang Haiyan,
Fenglan Zhang, Jin Cao, Qingsheng Zhang. & Zhirong Chen. 2012. Comparison of chromatographic and
titrimetric methods for the determination of the α-amino nitrogen
in standard solution and fish protein hydrolysates. J. Food Research
1(4): 174-183.
Wisuthiphaet, N. & Kongruang, S. 2015.
Production of fish protein hydrolysates by acid
and enzymatic hydrolysis. Journal
of Medical and Bioengineering 4(6): 466-470.
*Corresponding author; email: sripriatni@gmail.com
|