Sains Malaysiana 49(3)(2020): 545-552

http://dx.doi.org/10.17576/jsm-2020-4903-09

 

Production and Characterization of Spray-Dried Swamp Eel (Monopterus albus) Protein Hydrolysate Prepared by Papain

(Pengeluaran dan Pencirian Hidrolisat Protein Belut Paya Semburan Kering (Monopterus albus) disediakan melalui Papain)

 

SRI PRIATNI1*, KEZIA HARIMADI2, EFENDI BUANA2, WAWAN KOSASIH1 & ROHMATUSSOLIHAT ROHMATUSSOLIHAT3

 

1Research Unit for Clean Technology, Indonesian Institute of Sciences, Indonesia

 

2Surya University, Indonesia

 

3Research Center for Biotechnology LIPI, Indonesia

 

Received: 2 September 2019/Accepted: 5 December 2019

 

ABSTRACT

Protein hydrolysate from swamp eel (Monopterus albus) has been prepared by enzymatic hydrolysis process using papain enzyme. Evaluation of the extent of protein hydrolysis was conducted by measuring the degree of hydrolysis (DH). The optimization of protein hydrolysate production has been carried out by analyzing the influences of papain enzyme concentration, temperature, and time of hydrolysis on the degree of hydrolysis (DH) using RSM design. The optimized product was spray-dried and analyzed the proximate (moisture, lipid, protein) content and the yield (%). The fish protein hydrolysate (FPH) powder product was characterized by the foaming capacity and stability, and also by FTIR, DSC and PSA methods. The optimum condition of enzymatic hydrolysis of swamp eel protein was obtained by an addition 0.49 % of papain enzyme at 45oC for 9 hours. The degree of hydrolysis (DH) of this product was 7.96 % with a yield of 14.72 %. The foaming capacity of swamp eel protein hydrolysate powder was between 12.5 - 62.5 % and the foaming stability was between 3.22 - 31.25 %. The highest foaming capacity and stability of this product was reached at pH 4.0. Based on the spectrum FTIR analysis, the FPH product contained amines, aromatics, aliphatics, amide B and amide II groups. DSC analysis of the FPH product showed two peaks (Tm) at 65 oC and 108.5 oC. The particle size of the FPH powder product was distributed within 100 nm-1500 nm range with the highest intensity was 8.91 %. This study shows the potential usage of swamp eel for the production of FPH by enzymatic hydrolysis using papain enzyme with high yield and serves as a protein supplement.

 

Keywords: Monopterus albus; papain; protein hydrolysate

 

Abstrak

 

Hidrolisat protein daripada belut paya (Monopterus albus) telah disediakan melalui proses hidrolisis enzim dengan menggunakan enzim papain. Penilaian tahap hidrolisis protein telah dijalankan dengan mengukur darjah hidrolisis (DH). Pengoptimuman pengeluaran hidrolisat protein telah dijalankan dengan menganalisis kepekatan enzim papain, suhu dan masa hidrolisis pada darjah hidrolisis (DH) menggunakan reka bentuk RSM. Produk yang dioptimumkan adalah sembur-kering dan analisis kandungan proksimat serta hasil (%). Produk serbuk protein hidrolisat (FPH) dicirikan melalui kapasiti buih dan kestabilan serta kaedah FTIR, DSC dan PSA. Keadaan yang optimum untuk enzim hidrolisis daripada protein belut paya diperoleh dengan penambahan 0.49 % enzim papain pada 45 oC untuk 9 jam. Darjah hidrolisis (DH) produk ini adalah 7.96 % dengan hasil sebanyak 14.72 %. Kapasiti buih serbuk hidrolisat protein belut paya adalah antara 12.5-62.5 % dan kestabilan buih adalah antara 3.22-31.25 %. Kapasiti buih tertinggi dan kestabilan produk ini telah dicapai pada pH4.0. Berdasarkan analisis spektrum FTIR, produk FPH mengandungi kumpulan amina, aromatik, alifatik, amida B dan amida II. Analisis DSC produk FPH menunjukkan dua puncak (Tm) pada 65 oC dan 108.5 oC. Saiz zarah produk serbuk FPH diagihkan dalam julat lingkungan 100 nm-1500 nm dengan keamatan tertinggi adalah pada 8.91 %. Kajian ini menunjukkan potensi penggunaan belut paya untuk pengeluaran FPH melalui hidrolisis enzim menggunakan enzim papain dengan hasil yang tinggi dan berfungsi sebagai protein tambahan.

 

Kata kunci: Hidrolisat protein; Monopterus albus; papain

 

REFERENCES

Amri, E. & Mamboya, F. 2012. Papain, a plant enzyme of biological importance: A review. American Journal of Biochemistry and Biotechnology 8(2): 99-104.

Annisa, S., Sastro, Y. & Amalia, U. 2017. The effect of various fish species on fish protein hydrolysate with the addition of papain enzyme. Indonesian Journal of Fisheries Science and Technology 13(1): 24-30.

AOAC. 1995. Official Methods of Analysis of the Association Official Analytical Chemistry. Washington DC.

Carić, M. 1994. Concentrated and Dried Dairy Products. New York: VCH Publishers Inc.

Chabanon, G., Chevalot, I., Framboisier, X., Chenu, S. & Marc, I. 2007. Hydrolysis of rapeseed protein isolates: Kinetics, characterization and functional properties of hydrolysates. Process Biochemistry 42: 1419-1428.

Fallah, M., Bahram, S. & Javadian, S.R. 2015. Fish peptone development using enzymatic hydrolysis of silver carp by-products as a nitrogen source in Staphylococcus aureus media. Food Science & Nutrition 2: 153-157.

Gill, P., Moghadam, T.T. & Ranjbar, B. 2010. Differential scanning calorimetry        techniques: Applications in biology and nanoscience. J. Biomol. Tech. 21(4):         167-193.

Halim, N.R.A. & Sarbon, N.M. 2019. Characterization of Asian swamp eel (monopterus sp.) protein hydrolysate functional properties prepared using alcalase enzyme. Food Research.  https://www.researchgate.net/publication/291287080_Optimization_of_enzymatic_hydrolysis_condition_and_functional_properties_of_eel_Monopterus_sp_protein_using_response_surface_methodology_RSM.

Halim, N.R.A. & Sarbon, N.M. 2017. A response surface approach on hydrolysis condition of eel (Monopterus sp.) protein hydrolysate with antioxidant activity. International Food Research Journal 24(6): 1081-1093.

Hassan, A., Martin, R.P.D.K.A., Subodh, X., Binaya, G. & Nayak, B. 2019. Evaluation of the properties of spray dried visceral protein hydrolysate from Pangasianodon hypophthalmus (Sauvage, 1978) extracted by enzymatic and chemical methods. Waste and Biomass Valorization 10(9): 2547-2558.

Heller, M.C., Carpenter, J.F. & Randolph, T.W. 1999. Protein formulation and lyophilization cycle design: Prevention of damage due to freeze-concentration induced phase separation. Biotechnology and Bioengineering 63(2): 166-174. DOI: 10.1002/(SICI)1097-0290(19990420) 63:23.0.CO;2-H.

Hilles, A.R. 2018. Classification of Asian swamp eel species. Current Trends in Biomedical Engineering & Biosciences DOI: 10.19080/CTBEB.2018.15.555901.

John, H., Mansuri, S.M., Giri, S.K. & Sinha, L.K. 2018. Rheological properties and particle size distribution of soy protein isolate as affected by drying methods. Nutrition & Food Science International Journal 7(5). DOI: 10.19080/NFSIJ.2018.07.555721.

Kain, R.J., Chen, Z., Sonda, T.S. & Kpawoh, J.C.A. 2009. Study on the effects of enzymatic hydrolysis on the physical, functional and chemical properties of peanut protein isolates extracted from defatted heat pressed peanut meal flour (Arachis hypogaea L.). Pakistan Journal of Nutrition 8(6): 818-825.

Kempka, A.P. & Prestes, R.C. 2015. Foaming and emulsifying capacity, foam and emulsion stability of proteins of porcine blood: Determination at different values of pH and concentrations. Revista Brasileira de Tecnologia Agroindustrial 9(1): 1797-1809.

Lee, G. 2002. Spray-drying of proteins. In Rational Design of Stable Protein Formulations, vol. 12, edited by Carpenter, J.F. & Manning, M.C. Springer: Pharmaceutical Biotechnology. pp. 135-158.

Levitsky, D.I., Pivovarova, A.V., Mikhailova, V.V. & Nikolaeva, O.P. 2008. Thermal unfolding and aggregation of actin stabilization and destabilization of actin filaments. FEBS Journal 275: 4280-4295.

Mohammed B.A.G. Al-bahri, Safa A. Al-Naimi. & Sundus H. Ahammed. 2009. The optimum conditions for production of soya peptone by acidic hydrolysis of soya proteins. Al-Khwarizmi Engineering Journal 5(1): 1-19.

Naqash, S.Y. & Nazeer, R.A. 2013. Antioxidant and functional properties of protein hydrolysates from pink perch (Nemipterus japonicus) muscle. J. Food Sci. Technol. 50(10): 972-978.

Prabha, J., Vincent, S., Joseph, S. & Magdalene, J. 2016. Bioactive and functional properties of fish protein hydrolysate from Leiognathus bindus. Asian J. Pharm. Clin. Res. 9(5): 5-9.

Priatni, S., Kosasih, W., Budiwati, T.A. & Ratnaningrum, D. 2016. Production of peptone from boso fish (Oxyeleotris marmorata) for bacterial growth medium. IOP Conference Series: Earth and Environmental Science 60: 012009. 

Ren, J., Wang, H., Zhao, M., Cui, C. & Hu, X. 2010. Enzymatic hydrolysis of grass carp myofibrillar protein and antioxidant properties of hydrolysates. Czech J. Food Sci. 28(6): 475-484.

Rosli, N. & Sarbon, N.M. 2015. Physicochemical and structural properties of Asian swamp eel (Monopterus albus) skin gelatin as compared to bovine gelatin. International Food Research Journal 22(2): 699-706.

Salwanee, S., Wan Aida, W.M., Mamot, S., Maskat, M.Y. & Ibrahim, S. 2013. Effects of enzyme concentration, temperature, pH and time on the degree of hydrolysis of protein extract from viscera of tuna (Euthynnus affinis) by using alcalase. Sains Malaysiana 42(3): 279-287.

Samsudin, N.A., Halim, N.R.A. & Sarbon, N.M. 2018. pH levels effect on functional properties of different molecular weight eel (Monopterus sp.) protein hydrolysate. Journal of Food Science and Technology 55(11):  4608-4614.

Saputra, D. & Nurhayati, T. 2013. Production of fish hydrolysates protein from waste of fish carp (Cyprinus carpio) by enzymatic hydrolysis material fish hydrolysates protein procedure specific activity of papain (Suhandana, 2010). ComTech. 2012: 11-18.

Trivedi, M.K., Branton, A., Trivedi, D., Nayak, G., Singh, R. & Jana, S. 2015. Physical, spectroscopic and thermal characterization of biofield treated fish peptone. European Journal of Biophysics 3(6): 51-58.

Wang Haiyan, Fenglan Zhang, Jin Cao, Qingsheng Zhang. & Zhirong Chen. 2012. Comparison of chromatographic and titrimetric methods for the determination of the α-amino nitrogen in standard solution and fish protein hydrolysates. J. Food Research 1(4): 174-183.

Wisuthiphaet, N. & Kongruang, S. 2015. Production of fish protein hydrolysates by acid and enzymatic hydrolysis. Journal of Medical and Bioengineering 4(6): 466-470.

 

*Corresponding author; email: sripriatni@gmail.com

 

 

 

 

previous