Sains Malaysiana 49(3)(2020): 593-602

http://dx.doi.org/10.17576/jsm-2020-4903-14

 

Cytotoxicity of L- and D-Ascorbic Acid on Murine and Human Suspension Peripheral Blood Cells

(Sitotoksisiti L- dan D-Asid Askorbik ke atas Sel Ampaian Darah Periferi Mencit dan Manusia)

 

INTAN ZARINA ZAINOL ABIDIN1, THANALETCHUMI MANOGARAN2 & SHAHRUL HISHAM ZAINAL ARIFFIN2,3*

 

1Centre for Research and Graduate Studies, University of Cyberjaya, 63000 Cyberjaya, Selangor Darul Ehsan, Malaysia

 

2Centre for Biotechnology and Functional Food, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Malaysian Genome Institute (MGI), National Institute of Biotechnology Malaysia (NIBM), Jalan Bangi, 43600 Kajang, Selangor Darul Ehsan, Malaysia

 

Received: 29 July 2019/Accepted: 18 November 2019

 

ABSTRACT

Ascorbic acid has two isoforms, i.e., L-ascorbic acid which exists naturally and D-ascorbic acid which only can be found in synthetic form. This study aimed to determine the cytotoxic effect of L- and D- ascorbic acid on primary cell, i.e. murine and human suspension cells of peripheral blood. Murine and human suspension blood cells were obtained through density gradient centrifugation using Ficoll-Paque™ PLUS. Non-adherent cells were identified after 7 days in culture and seeded at 1 × 105 cells/mL. Both newly isolated primary cells were analyzed for in vitro proliferation ability for 7 days. The cells were treated with L- and D-ascorbic acid at concentrations 30, 50, and 90 µg/mL followed by Trypan blue viability assay at day 0, 3, 7, and 14. Cells cultured in the complete medium were represented as control. Murine and human suspension blood cells showed round morphology and significant increase of viable cells after 7 days in complete medium. Both cells treated with L-ascorbic acid exhibited low cytotoxic effect at 30, 50, and 90 µg/mL concentrations. In addition, murine blood cells treated with D-ascorbic acid caused total population cell death in all three concentrations at day 14, whereas human suspension blood cells only exhibited total population cell death at higher concentration, i.e. 90 µg/mL. In conclusion, L-ascorbic acid exhibited minimal cytotoxic effect on both primary cell sources as compared to lethal effect of D-ascorbic acid treatment.

 

Keywords: Cytotoxicity; D-ascorbic acid; human suspension blood cells; L-ascorbic acid; Mus musculus

 

ABSTRAK

Asid askorbik terdiri daripada dua isoform iaitu L-asid askorbik yang wujud secara semula jadi dan D-asid askorbik yang hanya terdapat dalam bentuk sintetik. Kajian ini adalah bertujuan untuk menentukan kesan sitotoksik L- dan D-asid askorbik ke atas sel primari iaitu sel ampaian darah periferi mencit dan manusia. Sel ampaian darah mencit dan manusia diperoleh melalui kaedah pengemparan kecerunan ketumpatan menggunakan Ficoll-Paque™ PLUS. Sel ampaian dikenal pasti selepas 7 hari pengkulturan dan dikulturkan pada ketumpatan 1 × 105 sel/mL. Kedua-dua sumber sel yang baru dikulturkan dianalisis bagi menentukan keupayaan proliferasi in vitro selama 7 hari. Sel seterusnya dirawat dalam L- dan D-asid askorbik pada kepekatan 30, 50 dan 90 µg/mL diikuti dengan pengasaian keviabelan tripan biru pada hari 0, 3, 7 dan 14. Sel yang dikulturkan dalam medium lengkap mewakili kawalan. Sel ampaian darah mencit dan manusia menunjukkan morfologi bulat dan sel viabel didapati meningkat secara signifikan selepas 7 hari di dalam medium lengkap. Kedua-dua sel yang dirawat dengan L-asid askorbik menunjukkan kesan sitotoksik yang rendah pada kepekatan 30, 50 dan 90 µg/mL. Walau bagaimanapun, sel yang dirawat dengan D-asid askorbik menyebabkan kematian sel pada ketiga-tiga kepekatan pada hari ke-14, manakala sel ampaian manusia hanya menunjukkan kematian keseluruhan sel pada kepekatan tinggi iaitu 90 µg/mL.  Kesimpulannya, L-asid askorbik menunjukkan kesan sitotoksik yang minima ke atas kedua-dua sumber sel primari berbanding kesan kematian dalam rawatan D-asid askorbik.

 

Kata kunci: D-asid askorbik; L-asid askorbik; Mus musculus; sel ampaian darah manusia; sitotoksisiti

 

REFERENCES

Ab Kadir, R., Zainal Ariffin, S.H., Megat Abdul Wahab, R., Kermani, S. & Senafi, S. 2012. Characterization of mononucleated human peripheral blood cells. The Scientific World Journal 2012: Article ID. 843843.

Ab Kadir, R., Ariffin, S.H.Z., Megat Abdul Wahab, R., Senafi, S. & Huyop, F.Z. 2011. Differentiation potential of human suspension mononucleated peripheral blood cells. African Journal of Biotechnology 10: 10756.

Ariffin, S.H.Z., Abidin, I.Z.Z., Yazid, M.D. & Wahab, R.M.A. 2010. Differentiation analyses of adult suspension mononucleated peripheral blood cells of Mus musculus. Cell Communication and Signaling 8: 29.

Ayu Suraya, A., Muhammad Dain, Y., Nur Qisya Afifah Veronica, S., Rabiatul Adawiyah, R., Aminuddin, S. & Ruszymah, B.H.I. 2018. Osteogenic induction of Wharton’s jelly-derived mesenchymal stem cell for bone regeneration: A systematic review. Stem Cells International 2018: Article ID. 2406462.

Busra, F.M., Lokanathan, Y., Nadzir, M.M., Saim, A., Idrus, R.B.H. & Chowdhury, S.R. 2018. Attachment, proliferation, and morphological properties of human dermal fibroblasts on ovine tendon collagen scaffolds: A comparative study. The Malaysian Journal of Medical Sciences 24(2): 33-43.

Canty, E.G. & Kadler, K.E. 2005. Procollagen trafficking, processing and fibrillogenesis. Journal of Cell Science 118: 1341-1353.

Choi, K.M., Seo, Y.K., Yoon, H.H., Song, K.Y., Kwon, S.Y. & Lee, H.S. 2018. Effect of ascorbic acid on bone marrow-derived mesenchymal stem cell proliferation and differentiation. Journal of Biosciences and Bioengineering 105: 586-594.

Du, J., Cullen, J.J. & Buettner, G.R. 2012. Ascorbic acid: Chemistry, biology and the treatment of cancer. Biochimica et Biophysica Acta Reviews for Cancer 1826: 443-457.

Esteban, M.A., Wang, T., Qin, B.M., Yang, J.Y., Qin, D.J. & Cai, J.L. 2010. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 6: 71-79.

Farinawati, Y., Nur Atmaliya, L., Rohaya, M.A.W., Shahrul Hisham, Z.A. & Sahidan, S. 2018. Proliferation and osteoblast differentiation mice dental pulp stem cells between enzyme digestion and outgrowth method. Sains Malaysiana 47(4): 691-698.

Farinawati, Y., Amy, N.M.K., Wong, Y.Q., Nur Atmaliya, L., Shahrul Hisham, Z.A. & Rohaya, M.A.W. 2019. Morphology and osteogenic capability of MC3T3-E1 cells on granular hydroxyapatite scaffold. Journal of Biological Sciences 19(3): 201-209.

Gorrini, C., Harris, I.S. & Mak, T. 2013. Modulation of oxidative stress as an anticancer strategy. Nature Reviews on Drug Discovery 12: 931-947.

Granéli, C., Thorfve, A., Ruetschi, U., Brisby, H., Thomsen, P. & Lindahl, A. 2014. Novel markers of osteogenic and adipogenic differentiation of human bone marrow stromal cells identified using a quantitative proteomics approach. Stem Cell Research 12: 153-165.

Hadzir, S.N., Ibrahim, S.N., Abdul Wahab, R.M., Zainol Abidin, I.Z., Senafi, S. & Ariffin, Z.Z. 2014. Ascorbic acid induces osteoblast differentiation of human suspension mononuclear cells. Cytotherapy 16: 674-682.

Hanis, H., Mohd Reusmaazran, Y., Zainul Rashid, M.R., Ruszymah, I. & Chowdhury, S.R. 2018. Human amniotic membrane with aligned electrospun fiber as scaffold for aligned tissue regeneration. Tissue Engineering Part C Methods 24: 368-378.

Intan Zarina, Z.A., Puteri Haslin Nadya, H. & Shahrul Hisham, Z.A. 2018. Cyotoxic effect of Piper sarmentosum on MC3T3-E1 cell line and differentiation potential towards osteoblast. In Research Series Biosciences and Biotechnology, edited by Zamri, Z. Universiti Kebangsaan Malaysia. p.189.

Intan Zarina, Z.A., Shahrul Hisham, Z.A., Zaidah, Z.A. & Rohaya, M.A.W. 2010. Potential differentiation of three types of primitive cells originated from different proliferation terms of mouse blood. Sains Malaysiana 39: 305-313.

Ishikawa, S., Iwasaki, K., Komaki, M. & Ishikawa, I. 2004. Role of ascorbic acid in periodontal ligament cell differentiation. Journal of Periodontology 75: 709-716.

Kawada, H., Kaneko, M., Sawanobori, M., Uno, T., Matsuzawa, H. & Nakamura, Y. 2013. High concentrations of L-ascorbic acid specifically inhibit the growth of human leukemic cells via downregulation of HIF-1alpha transcription. PLoS ONE 8: e62717.

Kawaguchi, H., Manabe, N., Miyaura, C., Chikuda, H., Nakamura, K. & Kuro-O, M. 1999. Independent impairment of osteoblast and osteoclast differentiation in klotho mouse exhibiting low-turnover osteopenia. Journal of Clinical Investigation 104: 229-237.

Kermani, S., Megat Abdul Wahab, R., Zainol Abidin, I.Z., Zainal Ariffin, Z., Senafi, S. & Zainal Ariffin, S.H. 2014. Differentiation capacity of mouse dental pulp stem cells into osteoblasts and osteoclasts. Cell Journal 16: 31-42.

Kim, B.C., Bae, H., Kwon, I.K., Lee, E.J., Park, J.H. & Khademhosseini, A. 2012. Osteoblastic/cementoblastic and neural differentiation of dental stem cells and their applications to tissue engineering and regenerative medicine. Tissue Engineering Part B Reviews 18(3): 235-244.

Kyllönen, L., Haimi, S., Mannerström, B., Huhtala, H., Rajala, K.M. & Skottman, H. 2013. Effects of different serum conditions on osteogenic differentiation of human adipose stem cells in vitro. Stem Cell Research and Therapy 4(1): 17.

Lange, C. & Calegari, F. 2010. Cdks and cyclins link G1 length and differentiation of embryonic, neural and hematopoietic stem cells. Cell Cycle 9: 1893-1900.

Leung, P.Y., Miyashita, K., Young, M. & Tsao, C.S. 1993. Cytotoxic effect of ascorbate and its derivatives on cultured malignant and nonmalignant cell lines. AntiCancer Research 13: 475-480.

Maroon, J.C., Bost, J.W. & Maroon, A. 2010. Natural anti-inflammatory agents for pain relief. Surgical Neurology International 1: 80.

Miura, K., Yazama, F. & Tai, A. 2015. Oxidative stress-mediated antitumor activity of erythorbic acid in high doses. Biochemistry and Biophysical Reports 3: 117-122.

Montecinos, V., Guzman, P., Barra, V., Villagran, M., Munoz-Montesino, C. & Sotomayor, K. 2007. Vitamin C is an essential antioxidant that enhances survival of oxidatively stressed human vascular endothelial cells in the presence of a vast molar excess of glutathione. Journal of Biological Chemistry 282(21): 15506-15515.

Murad, S., Grove, D., Lindberg, K.A., Reynolds, G., Sivarajah, A. & Pinnell, S.R. 1981. Regulation of collagen synthesis by ascorbic acid. Proceedings of the National Academy Sciences of United States of America 78: 2879-2882.

Nam, S., Won, J.E., Kim, C.H. & Kim, H.W. 2011. Odontogenic differentiation of human dental pulp stem cells stimulated by the calcium phosphate porous granules. Journal of Tissue Engineering 2011: 812547.

Naidu, K.A. 2003. Vitamin C in human health and disease is still a mystery? An overview. Nutrition Journal 2: 7. doi: 10.1186/1475-2891-2-7.

Pham-Huy, L.A., He, H. & Pham-Huy, C. 2008. Free radicals, antioxidants in disease and health. International Journal of Biomedical Science 4: 89-96.

Potdar, P.D. & D'Souza, S.B. 2010. Ascorbic acid induces in vitro proliferation of human subcutaneous adipose tissue derived mesenchymal stem cells with upregulation of embryonic stem cell pluripotency markers Oct4 and SOX 2. Human Cell 23(4): 152-155.

Qiao, H., Bell, J., Juliao, S., Li, L. & May, J.M. 2009. Ascorbic acid uptake and regulation of type I collagen synthesis in cultured vascular smooth muscle cells. Journal of Vascular Research 46: 15-24.

Ravinanthanan, M., Hedge, M.N., Shetty, V. & Kumari, S. 2018. Cytotoxicity evaluation of combinations irrigant regimens with MTAD on two different cell lines. Contemporary Clinical Dentistry 9: 255-259.

Rohaya, M.A.W., Nur Akmal, M.R., Sahidan, S., Intan Zarina, Z.A., Zaidah, Z.A. & Shahrul Hisham, Z.A. 2017. Impact of isolation method on doubling time and the quality of chondrocyte and osteoblast differentiated from murine dental pulp stem cells. PeerJ 14(5): e3180.

Shahrul Hisham, Z.A., Thanaletchumi, M., Intan Zarina, Z.A., Rohaya, M.A.W. & Sahidan, S. 2017. A perspective on stem cells as biological systems that produce differentiated osteoblasts and odontoblasts. Current Stem Cell Research & Therapy 12(3): 247-259.

Shahrul Hisham, Z.A., Nur Akmal, M.R., Rohaya, M.A.W., Sahidan, S., Intan Zarina, Z.A. & Zaidah, Z.A. 2016. Analyses of basal media and serum for in vitro expansion of suspension peripheral blood mononucleated stem cell. Cytotechnology 68(4): 675-686.

Shamsul, S., Tan, K.K., Chen, H.C., Aminuddin, S. & Ruszymah, I. 2013. Tricalcium phosphate/hydroxyapatite (TCP-HA) bone scaffold as potential candidate for the formation of tissue engineered bone. Indian Journal of Medical Research 137: 1093-1101.

Shamsul, B.S., Chowdhury, S.R., Ruszymah, B.H.I. & Nor Hamdan, B.M.Y. 2018. Effects of PLGA nanofibre on osteoarthritic chondrocytes. Sains Malaysiana 47(10): 2325-2336.

Shanmuganantha, L., Azmi, B., Abdul, H.A.R., Nor Hazla, M.H., Sabaru, A.M. & Ruszymah, B.H.I. 2018. Role of titanium-wollastonite in promoting mesenchymal stem cells growth. Regenerative Research 7: 28-30.

Shiga, M., Kapila, Y.L., Zhang, Q., Hayami, T. & Kapila, S. 2003. Ascorbic acid induces collagenase-1 in human periodontal ligament cells but not in MC3T3-E1 osteoblast-like cells: Potential association between collagenase expression and changes in alkaline phosphatase phenotype. Journal of Bone and Mineral Research 18: 67-77.

Strober, W. 2001. Trypan blue exclusion test of cell viability. Current Protocols in Immunology. doi: 10.1002/0471142735.ima03bs21.

Tran Hle, B. & Doan, V.N. 2015. Human dental pulp stem cells cultured onto dentin derived scaffold can regenerate dentin-like tissue in vivo. Cell and Tissue Banking 16: 559-568.

Tran, S., Puhar, A., Ngo-Camus, M. & Ramarao, N. 2011. Trypan blue dye enters viable cells incubated with the pore-forming toxin HlyII of Bacillus cereus. PLoS ONE 6(9): e22876.

Wan Haifa Haryani, W.O., Shahrul Hisham, Z.A., Zaidah, Z.A., Muhd Fauzi, S., Sahidan, S. & Rohaya, M.A.W. 2010. Anticancer screening of ethanol extract from selected piperaceae family and its determination via trypan blue staining. Sains Malaysiana 39(6): 941-949.

Yamauchi, M. & Sricholpech, M. 2012. Lysine post-translational modifications of collagen. Essays of Biochemistry 52: 113-133.

Yazid, M.D., Zainal Ariffin, S.H., Senafi, S., Zainal Ariffin, Z. & Megat Abdul Wahab, R. 2011. Stem cell heterogeneity of mononucleated cells from murine peripheral blood: Molecular analysis. The Scientific World Journal 11: 340278.

Yokoo, S., Furumoto, K., Hiyama, E. & Miwa, N. 2004. Slow-down of age-dependent telomere shortening is executed in human skin keratinocytes by hormesis-like-effects of trace hydrogen peroxide or by anti-oxidative effects of pro-vitamin C in common concurrently with reduction of intracellular oxidative stress. Journal of Cell Biochemistry 93: 588-597.

Yuan, X., Cao, X. & Yang, S.Y. 2019. IFT80 is required for stem cell proliferation, differentiation, and odontoblast polarization during tooth development. Cell Death and Disease 10(2): 63.

Zhang, P., Li, J., Qi, Y., Zou, Y., Liu, L. & Tang, X. 2016. Vitamin C promotes the proliferation of human adipose-derived stem cells via p53-p21 pathway. Organogenesis 12: 143-151.

 

*Corresponding author; email: hisham@ukm.edu.my

 

 

 

 

previous