Sains Malaysiana 49(3)(2020): 603-611

http://dx.doi.org/10.17576/jsm-2020-4903-15

Effects of Plant Oligosaccharides Derived from Dragon Fruit on Gut Microbiota in Proximal and Distal Colon of Mice

(Kesan Tumbuhan Oligosakarida yang Diambil daripada Buah Naga pada Mikrobiota Usus dalam Kolon Proksi dan Distal Tikus)

SARANYA PEERAKIETKHAJORN1,3*, NILOBON JEANMARD1,3, PAPATSORN CHUENPANITKIT1,3, SAKENA K-DA1,2,3, KANRAWEE BANNOB1,2 & PISSARED KHUITUAN2,3

1Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand

2Department of Physiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand

3Gut Biology and Microbiota Research Unit, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand

Received: 19 April 2019/Accepted: 18 November 2019

 

ABSTRACT

Prebiotic oligosaccharides are used as supplements to improve colon health. Oligosaccharides derived from dragon fruit (DFO) are a mixture of fructo-oligosaccharides (FOS), and have prebiotic properties that increase beneficial bacteria in vitro. This study aimed to investigate changes in gut microbiota in the colon of mice fed a diet supplemented with DFO. Treatment groups were fed 100, 500, and 1000 mg/kg of DFO, 1000 mg/kg FOS and distilled water. The results showed that DFO did not change the body weight of mice, but altered microbiota in the proximal and distal colon. Populations of Blautia, Parabacteroides, and Bacteroides were among the highest proportions of bacteria represented after all treatments. Lactobacillus was also found in the proximal and distal colon. Moreover, qPCR results showed that Bifidobacteria increased in the distal colon of mice treated with 100 and 1000 mg/kg DFO for 14 days, while Lactobacilli increased in the proximal colon of mice treated with 500 mg/kg DFO for 7 days. In contrast, Enterococci decreased in the proximal colon of mice that were given 100, 500, and 1000 mg/kg of DFO and 1000 mg/kg of FOS for 14 days. These results suggested that DFO is capable of increasing populations of beneficial bacteria while decreasing populations of some other bacteria. 

Keywords: Colon; dragon fruit; gut microbiota; prebiotic oligosaccharides

ABSTRAK

Oligosakarida prebiotik digunakan sebagai suplemen untuk menambahbaik kesihatan kolon. Oligosakarida yang diambil daripada buah naga (DFO) adalah campuran frukto-oligosakarida (FOS) dan mempunyai sifat prebiotik yang meningkatkan bakteria berfaedah secara in vitro. Kajian ini bertujuan untuk mengkaji perubahan dalam mikrobiota usus pada kolon tikus diberi makan diet disuplementasi dengan DFO. Kumpulan rawatan diberi makan 100, 500 dan 1000 mg/kg DFO, 1000 mg/kg FOS dan air suling. Keputusan menunjukkan DFO tidak mengubah berat tikut tetapi meminda  mikrobiota pada proksimal dan kolon distal. Populasi Blautia, Parabacteroides dan Bacteroides adalah antara perkadaran tertinggi bakteria selepas rawatan. Lactobacillus juga ditemui pada proksimal dan kolon distal. Tambahan lagi, keputusan qPCR menunjukkan bahawaa Bifidobacteria meningkat dalam kolon distal tikus dirawat dengan 100 dan 1000 mg/kg DFO untuk 14 hari, manakala Lactobacilli meningkat dalam kolon distal tikus dirawat dengan 500 mg/kg DFO untuk 7 hari. Secara kontra, Enterococci menurun dalam kolon distal tikus yang diberi makan 100, 500 dan 1000 mg/kg DFO serta 1000 mg/kg FOS untuk 14 hari. Keputusan ini menunjukkan bahawa DFO berupaya untuk meningkatkan populasi bakteria berfaedah sambil menurunkan populasi bakteria lain.

 

Kata kunci: Buah naga; kolon; mikrobiota usus; oligosakarida prebiotik

 

REFERENCES

Ariffin, A.A., Bakar, J., Tan, C.P., Rahman, R.A., Roselina, K. & Loi, C.C. 2008. Essential fatty acids of pitaya (dragon fruit) seed oil. Food Chem. 114: 561-564.

Awad, W., Ghareeb, K. & Böhm, J. 2008. Intestinal structure and function of broiler chickens on diets supplemented with a synbiotic containing Enterococcus faecium and oligosaccharides. Int. J. Mol. Sci. 9: 2205-2216.

Binn, N. 2013. Role of the GI tract microbiota in health and disease. In Probiotics, Prebiotics and the Gut Microbiota, edited by Gibson, G.R. Brussels, Belgium: International Life Science Institute Europe. pp. 4-10.

Charoensiri, R., Kongkachuichai, R., Suknicom, S. & Sungpuag, P. 2009. Beta-carotene, lycopene, and alpha-tocopherol contents of selected Thai fruits. Food Chem. 113: 202-207.

Dasaesamoh, R., Youravong, W. & Wichienchot, S. 2016a. Digestibility, fecal fermentation and anti-cancer of dragon fruit oligosaccharides. Int. Food Res. J. 23: 2581-2587.

Dasaesamoh, R., Youravong, W. & Wichienchot, S. 2016b. Optimization on pectinase extraction and purification by yeast fermentation of oligosaccharides from dragon fruit (Hylocereus undatus). Int. Food Res. J. 23: 2601-2607.

Femia, A.P., Salvadori, M., Broekaert, W.F., Francois, I.E.J.A., Delcour, J.A., Courtin, C.M. & Caderni, G. 2010. Arabinoxylan-oligosaccharides (AXOS) reduce preneoplastic lesions in the colon of rats treated with 1,2-dimethylhydrazine (DMH). Eur. J. Nutr. 49: 127-132.

Fu, C.J., Carter, J.N., Li, Y., Porter, J.H. & Kerley, M.S. 2006. Comparison of agar plate and real-time PCR on enumeration of Lactobacillus, Clostridium perfringens and total anaerobic bacteria in dog faeces. Lett. Appl. Microbiol. 42: 490-494.

Gibson, G.R. & Rastall, R.A. 2006. Prebiotics: Development and Application. West Sussex, England: John Wiley & Sons Press.

Gibson, G.R. & Roberfroid, M.B. 1995. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 125: 1401-1412.

Gibson, G.R., Scott, K.P., Rastall, R.A., Tuohy, K.M., Hotchkiss, A., Dubert-Ferrandon, A., Gareau, M., Murphy, E.F., Saulnier, D., Loh, G., Macfarlane, S., Delzenne, N., Ringel, Y., Kozianowski, G., Dickmann, R., Lenoir-Wijnkook, I., Walker, C. & Buddington, R. 2010. Dietary prebiotics: Current status and new definition. Food Sci. Technol. Bull. Funct. Foods 7: 1-19.

Gilmore, M.S., Clewell, D.B., Courvalin, P., Dunny, G.M., Murray, B.E. & Rice, B.L. 2002. The Enterococci: Pathogenesis, Molecular Biology, and Antibiotic Resistance. Washington: ASM Press.

Guarner, F. & Malagelada, J.R. 2003. Gut flora in health and disease. Lancet 361: 512-519.

He, J.H. & Jiang, S. 2005. Quantification of enterococci and human adenoviruses in environmental samples by real-time PCR. Appl. Environmantal Microbiol. 71: 2250-2255.

Johnston, D., Earley, B., Cormican, P., Murray, G., Kenny, D.A., Waters, S.M., McGee, M., Kelly, A.K. & McCabe, M.S. 2017. Illumina MiSeq 16S amplicon sequence analysis of bovine respiratory disease associated bacteria in lung and mediastinal lymph node tissue. BMC Vet. Res. 13: 1-18.

Kaufmann, P., Pfefferkorn, A., Teuber, M. & Meile, L. 1997. Identification and quantification of Bifidobacterium species isolated from food with genus-specific. Appl. Environmantal Microbiol. 63: 1268-1273.

Mandal, V., Sen, S.K. & Mandal, N.C. 2009. Effect of prebiotics on bacteriocin production and cholesterol lowering activity of Pediococcus acidilactici LAB 5. World J. Microbiol. Biotechnol. 25: 1837-1847.

Matsuki, T., Watanabe, K., Fujimoto, J., Takada, T., Matsumoto, K. & Kado, Y. 2004. Quantitative PCR with 16S primers for analysis of human intestinal bifidobacteria. Appl. Environ. Microbiol. 70: 167-173.

Pan, X., Chen, F., Wu, T., Tang, H. & Zhao, Z. 2009. Prebiotic oligosaccharides change the concentrations of short chain fatty-acids and the microbial population of mouse bowel. J. Zhejiang Univ. Sci. B 10: 258-263.

Patel, S. & Goyal, A. 2012. The current trends and future perspectives of prebiotics research: A review. 3 Biotech. 2: 115-125.

Peerakietkhajorn, S., Tsukada, K., Kato, Y., Matsuura, T. & Watanabe, H. 2015. Symbiotic bacteria contribute to increasing the population size of a freshwater crustacean, Daphnia magna. Environ. Microbiol. Rep. 7: 364-372.

Pelicano, E.R.L., Souza, P.A., Souza, H.B.A., Figueiredo, D.F., Boiago, M.M., Carvalho, S.R. & Bordon, V.F. 2005. Intestinal mucosa development in broiler chickens fed natural growth promoters. Brazilian J. Poult. Sci. 7: 221-229.

Rezzonico, E., Mestdagh, R., Delley, M., Combremont, S., Dumas, M.E., Holmes, E., Nicholson, J. & Bibiloni, R. 2011. Bacterial adaptation to the gut environment favors successful colonization: Microbial and metabonomic characterization of a simplified microbiota mouse model. Gut. Microbes 2: 307-318.

Sabater-Molina, M., Larque, E., Torrella, F. & Zamora, S. 2009. Dietary fructooligosaccharides. Ovid. Medlin. Physiol. Biochem. 65: 315-328.

Salminen, S., Bouley, C., Boutron, M.C., Cummings, J.H., Franck, A., Gibson, G.R., Isolauri, E., Moreau, M.C., Roberfroid, M. & Rowland, I. 1998. Functional food science and gastrointestinal physiology and function. Br. J. Nutr. 80: S147.

Thammarutwasik, P., Hongpattarakere, T., Chantachum, S., Kijroongrojana, K., Itharat, A., Reanmongkol, W., Tewtrakul, S. & Ooraikul, B. 2009. Prebiotics - A review. Songklanakarin J. Sci. Technol. 31: 401-408.

The R Core Team. 2013. R : A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Vamanu, E. & Vamanu, A. 2010. The influence of prebiotics on bacteriocin synthesis using the strain Lactobacillus paracasei CMGB16. African J. Microbiol. Res. 4: 534-537.

Wichienchot, S., Jatupornpipat, M. & Rastall, R.A. 2010. Oligosaccharides of pitaya (dragon fruit) flesh and their prebiotic properties. Food Chem. 120: 850-857.

Wichienchot, S. & Pansai, N. 2013. Prebiotic dragon fruit oligosaccharide for elderly. Research Report, Prince of Songkla University, Songkhla, Thailand.

Xu, B., Wang, Y., Li, J. & Lin, Q. 2009. Effect of prebiotic xylooligosaccharides on growth performances and digestive enzyme activities of allogynogenetic crucian carp (Carassius auratus gibelio). Fish Physiol. Biochem. 35: 351-357.

Yeo, S.K. & Liong, M.T. 2010. Effect of prebiotics on viability and growth characteristics of probiotics in soymilk. J. Sci. Food Agric. 90: 267-275.

Zhou, Y., Chen, H., He, H., Du, Y., Hu, J., Li, Y., Li, Y., Zhou, Y., Wang, H., Chen, Y. & Nie, Y. 2016. Increased Enterococcus faecalis infection is associated with clinically active Crohn disease. Medicine 95: 39.

*Corresponding author; email: saranya.pe@psu.ac.th

 

 

 

 

previous