Sains Malaysiana 49(3)(2020): 643-651
http://dx.doi.org/10.17576/jsm-2020-4903-19
1Research
Center for Biomedical Engineering, Faculty of Engineering, Universitas
Indonesia, Kota Depok, Jawa Barat 16424, Indonesia
2Department
of Metallurgical and Materials Engineering, Faculty of Engineering,
Universitas Indonesia, Kota Depok, Jawa Barat 16424, Indonesia
Received:
1 August 2019/Accepted: 5 December 2019
ABSTRACT
Porous
degradable metal is a promising material for hard-tissue scaffold
application. It offers better mechanical properties than polymer
and easier cell proliferation. However, the corrosion process in
the porous metallic implant usually causes toxicity on patient.
Therefore, corrosion process is the key for the development of the
alloy. The previous study has successfully formed a porous Iron-35%Manganese-1%Carbon
(Fe-35Mn-1C) alloy using Potassium carbonate (K2CO3)
as foaming agent with powder metallurgy process.
This study focused on the degradation behavior and phase
analysis of Fe-Mn-C product by polarization test in ringer solution,
Atomic Absorption Spectrometry (AAS), X-Ray Diffraction, and Energy
Dispersive Spectroscopy. This process resulted in nonmagnetic Austenitic
phase that is beneficial for MRI application. The result showed
that Fe-Mn-C alloy with foaming structure is suitable for degradable
biomaterials. The density of the product is 3.2 gr/cm3,
which is only half of the bulk material. The degradation rate of
the metals also increases to 6 mm/year, but the maximum ion released
is still under the limit in terms of toxicity against human.
Keywords: Degradable biomaterials; Fe-35Mn-1C; powder metallurgy; sinter dissolution process (SDP)
Abstrak
Logam degradasi berliang adalah bahan yang berpotensi untuk dibangunkan sebagai perancah tisu keras. Ia menawarkan sifat mekanik yang
lebih baik daripada polimer. Struktur poros bermanfaat untuk percambahan
sel yang tinggi dalam implan. Walau bagaimanapun, proses kakisan
dalam biomas bahan metalik menyebabkan ketoksikan pada pesakit. Oleh itu, proses kakisan
adalah kunci kepada perkembangan aloi. Kajian terdahulu telah berjaya
membentuk aloi besi-35% Manganese-1% Karbon (Fe-35Mn-1C) menggunakan potasium karbonat (K2CO3)
sebagai agen berbuih dengan proses metalurgi serbuk. Kajian ini
menumpukan kepada tingkah laku perosak dan analisis fasa produk
Fe-Mn-C melalui ujian Polarisasi dalam penyelesaian dering, Spektrometri Penyerapan Atom (AAS),
Difraksi X-Ray dan Spektroskopi Penyebaran Tenaga. Hasilnya
menunjukkan bahawa aloi Fe-Mn-C dengan struktur buih sesuai untuk
degradasi biobahan. Ketumpatan
produk adalah 3.2 gr/cm3, yang hanya separuh daripada
bahan pukal, kadar degradasi logam juga meningkat kepada 6 mm/tahun
tetapi keluaran ion maksimum di bawah paras ketoksikan
pada manusia.
Ia membentuk fasa Austenitic yang merupakan fasa nonmagnetik dan
selamat untuk aplikasi MRI.
Kata
kunci: Degradasi biobahan; Fe-35Mn-1C; metalurgi serbuk; proses pembubaran sinter (SDP)
REFERENCES
Benz, R., Elliott, J.F. & Chipman, J. 1973.
Thermodynamics of the solid phases in the system Fe−Mn−C.
Metallurgical Transactions 4(8):
1975-1986.
Čapek, J., Vojtěch, D. & Oborná,
A. 2015. Microstructural and mechanical properties of biodegradable
iron foam prepared by powder metallurgy. Materials & Design
83: 468-482.
Chakraborty Banerjee, P., Al-Saadi, S., Choudhary,
L., Harandi, S.E. & Singh, R. 2019. Magnesium implants: Prospects
and challenges. Materials 12(1): 136.
Feng, Y.P., Gaztelumendi, N., Fornell, J., Zhang,
H.Y., Solsona, P., Baró, M.D. & Sort, J. 2017. Mechanical properties,
corrosion performance and cell viability studies on newly developed
porous Fe-Mn-Si-Pd alloys. Journal of Alloys and Compounds 724: 1046-1056.
Harjanto, S.,
Pratesa, Y., Suharno, B. & Syarif, J. 2012. Corrosion behavior
of Fe-Mn-C Alloy as degradable materials candidate fabricated via powder metallurgy process. Advanced Materials Research 576: 386-389.
Huang, S.M., Nauman, E.A. & Stanciu, L.A. 2019. Investigation of porosity
on mechanical properties, degradation and in vitro cytotoxicity limit of Fe30Mn using space holder technique.
Materials Science and Engineering: C 99: 1048-1057.
Lehman, R.L., Gentry, J.S. & Glumac, N.G.
1998. Thermal stability of potassium carbonate near its melting
point. Thermochimica Acta 316(1):
1-9.
Murphy, C.M., Haugh, M.G. & O'Brien, F.J.
2010. The effect of mean pore size on cell attachment, proliferation
and migration in collagen-glycosaminoglycan scaffolds for bone tissue
engineering. Biomaterials 31(3):
461-466.
Osorio-Hernández, J.O., Suarez, M.A., Goodall, R., Lara-Rodriguez, G.A., Alfonso, I. & Figueroa, I.A. 2014. Manufacturing of open-cell Mg foams by replication
process and mechanical properties. Materials and Design 64: 136-141.
Pratesa, Y., Suharno, B., Wardhana, A.C. &
Harjanto, S.J.J.T. 2019. Application of carbamide as foaming agent
of Fe-Mn-C alloy for degradable biomaterial candidate with powder
metallurgy process. Jurnal Teknologi 81(1): 111-117 .
Pratesa, Y., Harjanto, S., Larasati, A., Suharno,
B. & Ariati, M. 2018. Degradable and porous Fe-Mn-C alloy for
biomaterials candidate. AIP Conference Proceedings 1933(1): 020007.
Šalak, A. & Selecká, M. 2012. Manganese
in Powder Metallurgy Steels. Cambridge: Springer Science &
Business Media. pp. 39-40.
Shah, F.A., Thomsen, P. & Palmquist, A. 2019.
Osseointegration and current interpretations of the bone-implant
interface. Acta Biomaterialia 84: 1-15.
Trumbo, P.,
Yates, A.A., Schlicker, S. & Poos, M. 2001. Dietary reference intakes: Vitamin A, vitamin K, arsenic, boron, chromium,
copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium,
and zinc. Journal of the Academy of Nutrition and Dietetics 101(3): 294.
Witte, F., Hort, N., Vogt, C., Cohen, S., Kainer,
K.U., Willumeit, R. & Feyerabend, F. 2008. Degradable biomaterials
based on magnesium corrosion. Current Opinion in Solid State
and Materials Science 12(5-6):
63-72.
Zhang, Q. & Cao, P. 2015. Degradable porous
Fe-35wt.% Mn produced via
powder sintering from NH4HCO3 porogen. Materials
Chemistry and Physics
163: 394-401.
*Corresponding
author; email: sri.harjanto@ui.ac.id
|