Sains Malaysiana 49(3)(2020): 643-651

http://dx.doi.org/10.17576/jsm-2020-4903-19

 

Degradation Characteristics of Porous Fe-Mn-C Alloys Obtained by Sintering-Dissolution Process (SDP) for Metallic Bone Scaffold

(Pencirian Degradasi Aloi Poros Fe-Mn-C Diperoleh daripada Proses Pembubaran Sinter (SDP) untuk Perancah Tulang Metalik) 

YUDHA PRATESA1,2, ALMIRA LARASATI2, SRI HARJANTO1,2*, BAMBANG SUHARNO2 & MYRNA ARIATI2

1Research Center for Biomedical Engineering, Faculty of Engineering, Universitas Indonesia, Kota Depok, Jawa Barat 16424, Indonesia

 

2Department of Metallurgical and Materials Engineering, Faculty of Engineering, Universitas Indonesia, Kota Depok, Jawa Barat 16424, Indonesia

 

Received: 1 August 2019/Accepted: 5 December 2019

 

ABSTRACT

Porous degradable metal is a promising material for hard-tissue scaffold application. It offers better mechanical properties than polymer and easier cell proliferation. However, the corrosion process in the porous metallic implant usually causes toxicity on patient. Therefore, corrosion process is the key for the development of the alloy. The previous study has successfully formed a porous Iron-35%Manganese-1%Carbon (Fe-35Mn-1C) alloy using Potassium carbonate (K2CO3) as foaming agent with powder metallurgy process.  This study focused on the degradation behavior and phase analysis of Fe-Mn-C product by polarization test in ringer solution, Atomic Absorption Spectrometry (AAS), X-Ray Diffraction, and Energy Dispersive Spectroscopy. This process resulted in nonmagnetic Austenitic phase that is beneficial for MRI application. The result showed that Fe-Mn-C alloy with foaming structure is suitable for degradable biomaterials. The density of the product is 3.2 gr/cm3, which is only half of the bulk material. The degradation rate of the metals also increases to 6 mm/year, but the maximum ion released is still under the limit in terms of toxicity against human.

 

Keywords: Degradable biomaterials; Fe-35Mn-1C; powder metallurgy; sinter dissolution process (SDP)

 

Abstrak

Logam degradasi berliang adalah bahan yang berpotensi untuk dibangunkan sebagai perancah tisu keras. Ia menawarkan sifat mekanik yang lebih baik daripada polimer. Struktur poros bermanfaat untuk percambahan sel yang tinggi dalam implan. Walau bagaimanapun, proses kakisan dalam biomas bahan metalik menyebabkan ketoksikan pada pesakit. Oleh itu, proses kakisan adalah kunci kepada perkembangan aloi. Kajian terdahulu telah berjaya membentuk aloi besi-35% Manganese-1% Karbon (Fe-35Mn-1C) menggunakan potasium karbonat (K2CO3) sebagai agen berbuih dengan proses metalurgi serbuk. Kajian ini menumpukan kepada tingkah laku perosak dan analisis fasa produk Fe-Mn-C melalui ujian Polarisasi dalam penyelesaian dering, Spektrometri Penyerapan Atom (AAS), Difraksi X-Ray dan Spektroskopi Penyebaran Tenaga. Hasilnya menunjukkan bahawa aloi Fe-Mn-C dengan struktur buih sesuai untuk degradasi biobahan. Ketumpatan produk adalah 3.2 gr/cm3, yang hanya separuh daripada bahan pukal, kadar degradasi logam juga meningkat kepada 6 mm/tahun tetapi keluaran ion maksimum di bawah paras ketoksikan pada manusia. Ia membentuk fasa Austenitic yang merupakan fasa nonmagnetik dan selamat untuk aplikasi MRI.

 

Kata kunci: Degradasi biobahan; Fe-35Mn-1C; metalurgi serbuk; proses pembubaran sinter (SDP)

 

REFERENCES

Benz, R., Elliott, J.F. & Chipman, J. 1973. Thermodynamics of the solid phases in the system Fe−Mn−C. Metallurgical Transactions 4(8): 1975-1986.

Čapek, J., Vojtěch, D. & Oborná, A. 2015. Microstructural and mechanical properties of biodegradable iron foam prepared by powder metallurgy. Materials & Design 83: 468-482.

Chakraborty Banerjee, P., Al-Saadi, S., Choudhary, L., Harandi, S.E. & Singh, R. 2019. Magnesium implants: Prospects and challenges. Materials 12(1): 136.

Feng, Y.P., Gaztelumendi, N., Fornell, J., Zhang, H.Y., Solsona, P., Baró, M.D. & Sort, J. 2017. Mechanical properties, corrosion performance and cell viability studies on newly developed porous Fe-Mn-Si-Pd alloys. Journal of Alloys and Compounds 724: 1046-1056.

Harjanto, S., Pratesa, Y., Suharno, B. & Syarif, J. 2012. Corrosion behavior of Fe-Mn-C Alloy as degradable materials candidate fabricated via powder metallurgy process. Advanced Materials Research 576: 386-389.

Huang, S.M., Nauman, E.A. & Stanciu, L.A. 2019. Investigation of porosity on mechanical properties, degradation and in vitro cytotoxicity limit of Fe30Mn using space holder technique. Materials Science and Engineering: C 99: 1048-1057.

Lehman, R.L., Gentry, J.S. & Glumac, N.G. 1998. Thermal stability of potassium carbonate near its melting point. Thermochimica Acta 316(1): 1-9.

Murphy, C.M., Haugh, M.G. & O'Brien, F.J. 2010. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31(3): 461-466.

Osorio-Hernández, J.O., Suarez, M.A., Goodall, R., Lara-Rodriguez, G.A., Alfonso, I. & Figueroa, I.A. 2014. Manufacturing of open-cell Mg foams by replication process and mechanical properties. Materials and Design 64: 136-141.

Pratesa, Y., Suharno, B., Wardhana, A.C. & Harjanto, S.J.J.T. 2019. Application of carbamide as foaming agent of Fe-Mn-C alloy for degradable biomaterial candidate with powder metallurgy process. Jurnal Teknologi 81(1): 111-117 .

Pratesa, Y., Harjanto, S., Larasati, A., Suharno, B. & Ariati, M. 2018. Degradable and porous Fe-Mn-C alloy for biomaterials candidate. AIP Conference Proceedings 1933(1): 020007.

Šalak, A. & Selecká, M. 2012. Manganese in Powder Metallurgy Steels. Cambridge: Springer Science & Business Media. pp. 39-40.

Shah, F.A., Thomsen, P. & Palmquist, A. 2019. Osseointegration and current interpretations of the bone-implant interface. Acta Biomaterialia 84: 1-15.

Trumbo, P., Yates, A.A., Schlicker, S. & Poos, M. 2001. Dietary reference intakes: Vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Journal of the Academy of Nutrition and Dietetics 101(3): 294.

Witte, F., Hort, N., Vogt, C., Cohen, S., Kainer, K.U., Willumeit, R. & Feyerabend, F. 2008. Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science 12(5-6): 63-72.

Zhang, Q. & Cao, P. 2015. Degradable porous Fe-35wt.% Mn produced via powder sintering from NH4HCO3 porogen. Materials Chemistry and Physics 163: 394-401.

 

*Corresponding author; email: sri.harjanto@ui.ac.id

 

 

 

 

 

previous