Sains Malaysiana 49(3)(2020): 703-712

http://dx.doi.org/10.17576/jsm-2020-4903-25

 

Modeling the Volatility of Cryptocurrencies: An Empirical Application of Stochastic Volatility Models

(Pemodelan Kemeruapan Mata Wang Kripto: Pengaplikasian Empirik Model Kemeruapan Stokastik)

 

MAMOONA ZAHID & FARHAT IQBAL*

 

Department of Statistics, University of Balochistan, Quetta, Pakistan

 

Received: 8 April 2019/Accepted: 10 November 2019

 

ABSTRACT

This paper compares a number of stochastic volatility (SV) models for modeling and predicting the volatility of the four most capitalized cryptocurrencies (Bitcoin, Ethereum, Ripple, and Litecoin). The standard SV model, models with heavy-tails and moving average innovations, models with jumps, leverage effects and volatility in mean were considered. The Bayes factor for model fit was largely in favor of the heavy-tailed SV model. The forecasting performance of this model was also found superior than the other competing models. Overall, the findings of this study suggest using the heavy-tailed stochastic volatility model for modeling and forecasting the volatility of cryptocurrencies.

 

Keywords: Bayesian model comparison; cryptocurrency; jumps; leverage; stochastic volatility

 

ABSTRAK

Kertas ini membandingkan beberapa model kemeruapan stokastik (SV) untuk pemodelan danpenganggaran kemeruapan empat modal mata wang kripto (Bitcoin, Ethereum, Ripple dan Litecoin). Model standard SV, model dengan hujung berat dan inovasi purata pergerakan, model dengan lompatan, kesan pengaruh dan kemeruapan dalam min diambil kira. Faktor Bayes untuk model penyuaian selalunya menyebelahi model SV hujung berat. Prestasi peramalan model ini didapati superior daripada model lain yang dibandingkan. Secara keseluruhan, keputusan kajian ini mencadangkan penggunaan model kemeruapan stokastik hujung berat untuk pemodelan penganggaran kemeruapan mata wang kripto.

Kata kunci: Kemeruapan stokastik; lompatan; mata wang kripto; perbandingan model Bayesi; pengaruh

References

Baur, D.G. & Dimpfl, T. 2018. Asymmetric volatility in crypto-currencies. Economic Letters 173: 148-151.

Bezerra, P.C.S. & Albuquerque, P.H.M. 2017. Volatility forecasting via SVR-GARCH with mixture of Gaussian kernels. Computational Management Science 14(2): 179-196.

Bollerslev, T. 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31(3): 307-327.           

Borri, N. 2019. Conditional tail-risk in cryptocurrency markets. Journal of Empirical Finance 50: 1-19.

Bouri, E., Azzi, G. & Dyhrberg, A.H. 2017. On the return-volatility relationship in the Bitcoin market around the price crash of 2013. Economics: The Open-Access, Open-Assessment E-Journal 11: 1-16.

Caporale, G.M. & Zekokh, T. 2019. Modelling volatility of cryptocurrencies using markov-switching GARCH models. Research in International Business and Finance 48: 143-155.

Catania, L. & Grassi, S. 2017. Modelling crypto-currencies financial time-series. CEIS Working Paper No. 417. Available at SSRN: https://ssrn.com/abstract=3084109.

Catania, L., Grassi, S. & Ravazzolo, F. 2018. Predicting the volatility of cryptocurrency time-series. CAMP Working Paper Series 3.

Chan, J.C.C. 2015. The stochastic volatility in mean model with time-varying parameters: An application to inflation modelling. Journal of Business and Economic Statistics 35(1): 17-28.

Chan, J.C.C. 2013. Moving average stochastic volatility models with applications to inflation forecast. Journal of Econometrics 176(2): 162-172.  

Chan, J.C.C. & Grant, A.L. 2016. Modeling energy price dynamics: GARCH versus stochastic volatility. Energy Economics 54: 182-189.

Chan, J.C.C. & Eisenstat, E. 2015. Marginal likelihood estimation with cross-entropy method. Economics Review 34(3): 256-285.

Chan, J.C.C. & Jeliazkov, I. 2009. Efficient simulation and integrated likelihood estimation in state space models. International Journal of Mathematical Modelling and Numerical Optimisation 1: 101-120.

Charfeddine, L. & Maouchi, Y. 2018. Are shocks on the returns and volatility of cryptocurrencies really persistent? Finance Research Letters 28: 423-430.

Charle, A. & Darne-Lemna, O. 2018. Volatility estimation for bitcoin: Replication and robustness. International Economics 157: 23-32.

Cheong, C.W., Lai, N.S., Isa, Z. & Nor, A.H.S.M. 2012. Asymmetry dynamic volatility forecast evaluations using interday and intraday data. Sains Malaysiana 14(10): 1287-1299.

Chu, J., Chan, S., Nadarajah, S. & Osterrieder, J. 2017. GARCH modelling of cryptocurrencies. Journal of Risk and Financial Management 10(4): 17. doi:10.3390/jrfm10040017.

Creal, D., Koopman, S.J. & Lucas, A. 2013. Generalized autoregressive score models with applications. Journal of Applied Econometrics 28(5): 777-795.

Diebold, F.X. & Mariano, R.S. 1995. Comparing predictive accuracy. Journal of Business and Economic Statistics 13(3): 253-263.

Eraker, B., Johannes, M. & Polson, N. 2003. The impact of jumps in volatility and returns. Journal of Finance 58(3): 1269-1300.

Fakhfekh, M. & Jeribi, A. 2020. Volatility dynamics of crypto-currencies’ returns: Evidence from asymmetric and long memory GARCH models. Research in International Business and Finance 51: 101075.

Ghysels, E., Harvey, A.C. & Renault, E. 1996. Stochastic volatility. In Statistical Models in Finance, edited by Rao, C.R. & Maddala, G.S. North-Holland, Amsterdam; Elsevier. pp. 119-191.

Gkillas, K. & Katsiampa, P. 2018. An application of extreme value theory to cryptocurrencies. Economics Letters 164: 109-111.

Harvey, A.C. 2013. Dynamic Models for Volatility and Heavy Tails: With Applications to Financial and Economic Time Series. Volume 52. New York: Cambridge University Press.

Harvey, A.C. & Shephard, N. 1996. The estimation of an asymmetric stochastic volatility model for asset returns. Journal of Business and Economic Statistics 14: 429-434.

Harvey, D., Leybourne, S. & Newbold, P. 1997. Testing the equality of prediction mean squared error. International Journal of Forecasting 13(2): 281-291.

Katsiampa, P. 2017. Volatility estimation for bitcoin: A comparison of GARCH models. Economics Letters 158: 3-6.

Koopman, S.J. & Hol Uspensky, E. 2002. The stochastic volatility in mean model: Empirical evidence from international stock markets. Journal of Applied Econometrics 17(6): 667-689.

Liesenfeld, R. & Jung, R.C. 2000. Stochastic volatility models: Conditional normality versus heavy-tailed distributions. Journal of Applied Econometrics 15: 137-160.

Liu, R., Shao, Z., Wei, G. & Wang, W. 2017. GARCH model with fat-tailed distributions and bitcoin exchange rate returns. Journal of Accounting, Business and Finance Research 1(1): 71-75.

Naimy, V.Y. & Hayek, M.R. 2018. Modelling and predicting the bitcoin volatility using GARCH models. International Journal of Mathematical Modelling and Numerical Optimisation 8(3): 197-215.

Peng, Y., Albuquerque, P.H.M., de Sa, J.M.C., Padula, A.J.A. & Montenegro, M.R. 2018. The best of two worlds: Forecasting high frequency volatility for cryptocurrencies and traditional currencies with support vector regression. Expert Systems with Applications 97: 177-192.

Rahim, M.A.A., Zahari, S.M. & Shariff, S.R. 2018. Variance targeting estimator for GJR-GARCH under Model’s Misspecification. Sains Malaysiana 47(9): 2195-2204.

Shephard, N. 1996. Statistical aspects of ARCH and stochastic volatility. In Time Series Models in Econometrics, Finance and Other Fields, edited by Cox, D.R., Hinkley, D.V. & Barndorff-Nielson, O.E. London: Chapman & Hall. pp. 1-67.

Stavroyiannis, S. & Babalos, V. 2017. Dynamic Properties of the Bitcoin and the US market. Accessed May 10, 2018. https://ssrn.com/abstract=2966998.

Taylor, S.J. 1986. Modelling Financial Time Series. Chichester: John Wiley.

Urquhart, A. 2017. The volatility of Bitcoin. SSRN Electronic Journal. DOI: 10.2139/ssrn.2921082.

 

*Corresponding author; email: farhatiqb@gmail.com

 

 

 

 

previous