Sains Malaysiana
49(3)(2020): 703-712
http://dx.doi.org/10.17576/jsm-2020-4903-25
Modeling
the Volatility of
Cryptocurrencies: An Empirical Application of
Stochastic Volatility Models
(Pemodelan Kemeruapan Mata Wang Kripto: Pengaplikasian
Empirik Model Kemeruapan Stokastik)
MAMOONA ZAHID & FARHAT IQBAL*
Department
of Statistics, University of Balochistan, Quetta, Pakistan
Received:
8 April 2019/Accepted: 10 November 2019
ABSTRACT
This paper compares
a number of stochastic volatility (SV) models for modeling and predicting
the volatility of the four most capitalized cryptocurrencies (Bitcoin,
Ethereum, Ripple, and Litecoin). The standard SV model, models with
heavy-tails and moving average innovations, models with jumps, leverage
effects and volatility in mean were considered. The Bayes factor
for model fit was largely in favor of the heavy-tailed SV model.
The forecasting performance of this model was also found superior
than the other competing models. Overall, the findings of this study
suggest using the heavy-tailed stochastic volatility model for modeling
and forecasting the volatility of cryptocurrencies.
Keywords:
Bayesian model comparison; cryptocurrency; jumps; leverage; stochastic volatility
ABSTRAK
Kertas ini membandingkan beberapa model kemeruapan stokastik
(SV) untuk pemodelan danpenganggaran kemeruapan empat modal mata
wang kripto (Bitcoin,
Ethereum, Ripple dan Litecoin). Model standard SV, model dengan hujung berat dan inovasi purata pergerakan, model dengan lompatan, kesan pengaruh dan kemeruapan dalam min diambil kira. Faktor Bayes untuk model
penyuaian selalunya menyebelahi model SV hujung berat. Prestasi peramalan model ini didapati superior daripada model lain yang dibandingkan. Secara keseluruhan, keputusan kajian ini mencadangkan penggunaan model kemeruapan
stokastik hujung berat untuk pemodelan penganggaran kemeruapan mata wang kripto.
Kata kunci: Kemeruapan stokastik; lompatan; mata wang kripto; perbandingan model Bayesi; pengaruh
References
Baur, D.G. &
Dimpfl, T. 2018. Asymmetric volatility in crypto-currencies. Economic
Letters 173: 148-151.
Bezerra, P.C.S.
& Albuquerque, P.H.M. 2017. Volatility forecasting via SVR-GARCH with mixture of Gaussian kernels. Computational Management Science 14(2):
179-196.
Bollerslev, T.
1986. Generalized autoregressive conditional heteroskedasticity.
Journal of Econometrics 31(3): 307-327.
Borri, N. 2019.
Conditional tail-risk in cryptocurrency markets. Journal of Empirical
Finance 50: 1-19.
Bouri, E., Azzi,
G. & Dyhrberg, A.H. 2017. On the return-volatility relationship
in the Bitcoin market around the price crash of 2013. Economics: The Open-Access, Open-Assessment E-Journal 11: 1-16.
Caporale, G.M.
& Zekokh, T. 2019. Modelling volatility of cryptocurrencies
using markov-switching GARCH models. Research in International
Business and Finance 48: 143-155.
Catania, L. &
Grassi, S. 2017. Modelling crypto-currencies financial time-series.
CEIS Working Paper No. 417. Available at SSRN: https://ssrn.com/abstract=3084109.
Catania, L., Grassi,
S. & Ravazzolo, F. 2018. Predicting the volatility of cryptocurrency
time-series. CAMP Working
Paper Series 3.
Chan, J.C.C. 2015.
The stochastic volatility in mean model with time-varying parameters:
An application to inflation modelling. Journal
of Business and Economic Statistics 35(1): 17-28.
Chan, J.C.C. 2013.
Moving average stochastic volatility models with applications to
inflation forecast. Journal
of Econometrics 176(2): 162-172.
Chan, J.C.C. &
Grant, A.L. 2016. Modeling energy price dynamics: GARCH versus stochastic
volatility. Energy Economics
54: 182-189.
Chan, J.C.C. &
Eisenstat, E. 2015. Marginal likelihood estimation with cross-entropy
method. Economics Review
34(3): 256-285.
Chan, J.C.C. &
Jeliazkov, I. 2009. Efficient simulation and integrated likelihood
estimation in state space models. International
Journal of Mathematical Modelling and Numerical Optimisation
1: 101-120.
Charfeddine, L.
& Maouchi, Y. 2018. Are shocks on the returns and volatility
of cryptocurrencies really persistent? Finance Research Letters
28: 423-430.
Charle, A. &
Darne-Lemna, O. 2018. Volatility estimation for bitcoin: Replication
and robustness. International Economics 157: 23-32.
Cheong, C.W., Lai,
N.S., Isa, Z. & Nor, A.H.S.M. 2012. Asymmetry dynamic volatility
forecast evaluations using interday and intraday data. Sains
Malaysiana 14(10): 1287-1299.
Chu, J., Chan,
S., Nadarajah, S. & Osterrieder, J. 2017. GARCH modelling of
cryptocurrencies. Journal
of Risk and Financial Management 10(4): 17. doi:10.3390/jrfm10040017.
Creal, D., Koopman,
S.J. & Lucas, A. 2013. Generalized autoregressive score models
with applications. Journal
of Applied Econometrics 28(5): 777-795.
Diebold, F.X. &
Mariano, R.S. 1995. Comparing predictive accuracy. Journal of Business and Economic Statistics 13(3): 253-263.
Eraker, B., Johannes,
M. & Polson, N. 2003. The impact of jumps in volatility and
returns. Journal of Finance
58(3): 1269-1300.
Fakhfekh, M. &
Jeribi, A. 2020. Volatility dynamics of crypto-currencies’ returns:
Evidence from asymmetric and long memory GARCH models. Research
in International Business and Finance 51: 101075.
Ghysels, E., Harvey,
A.C. & Renault, E. 1996. Stochastic volatility. In Statistical Models in Finance,
edited by Rao, C.R. & Maddala, G.S. North-Holland, Amsterdam;
Elsevier. pp. 119-191.
Gkillas, K. &
Katsiampa, P. 2018. An application
of extreme value theory to cryptocurrencies. Economics Letters 164: 109-111.
Harvey, A.C. 2013.
Dynamic Models for Volatility
and Heavy Tails: With Applications to Financial and Economic Time
Series. Volume 52. New York: Cambridge University Press.
Harvey, A.C. &
Shephard, N. 1996. The estimation of an asymmetric stochastic volatility
model for asset returns. Journal
of Business and Economic Statistics 14: 429-434.
Harvey, D., Leybourne,
S. & Newbold, P. 1997. Testing the equality of prediction mean
squared error. International
Journal of Forecasting 13(2): 281-291.
Katsiampa, P. 2017.
Volatility estimation for bitcoin: A comparison of GARCH models.
Economics Letters 158: 3-6.
Koopman, S.J. & Hol Uspensky, E. 2002. The stochastic volatility in mean model:
Empirical evidence from international stock markets. Journal of Applied Econometrics 17(6): 667-689.
Liesenfeld, R. & Jung, R.C. 2000. Stochastic
volatility models: Conditional normality versus heavy-tailed distributions.
Journal of Applied Econometrics
15: 137-160.
Liu, R., Shao,
Z., Wei, G. & Wang, W. 2017. GARCH model with fat-tailed distributions
and bitcoin exchange rate returns. Journal
of Accounting, Business and Finance Research 1(1): 71-75.
Naimy, V.Y. &
Hayek, M.R. 2018. Modelling and predicting the bitcoin volatility
using GARCH models. International
Journal of Mathematical Modelling and Numerical Optimisation
8(3): 197-215.
Peng, Y., Albuquerque,
P.H.M., de Sa, J.M.C., Padula, A.J.A. & Montenegro, M.R. 2018.
The best of two worlds: Forecasting high frequency volatility for
cryptocurrencies and traditional currencies with support vector
regression. Expert Systems with Applications 97: 177-192.
Rahim, M.A.A.,
Zahari, S.M. & Shariff, S.R. 2018. Variance targeting estimator
for GJR-GARCH under Model’s Misspecification. Sains Malaysiana
47(9): 2195-2204.
Shephard, N. 1996.
Statistical aspects of ARCH and stochastic volatility. In Time Series Models in Econometrics, Finance
and Other Fields, edited by Cox, D.R., Hinkley, D.V. & Barndorff-Nielson,
O.E. London: Chapman & Hall. pp. 1-67.
Stavroyiannis,
S. & Babalos, V. 2017. Dynamic Properties
of the Bitcoin and the US market. Accessed May 10, 2018. https://ssrn.com/abstract=2966998.
Taylor, S.J. 1986.
Modelling Financial Time Series.
Chichester: John Wiley.
Urquhart,
A. 2017. The volatility of Bitcoin.
SSRN Electronic Journal. DOI: 10.2139/ssrn.2921082.
*Corresponding
author; email: farhatiqb@gmail.com
|