Sains Malaysiana 49(4)(2020): 755-764
http://dx.doi.org/10.17576/jsm-2020-4904-04
Molecular
Characterisation of Eimeria
tenella Porin, a Potential
Anticoccidial Drug Target
(Pencirian Molekul Eimeria tenella Porin, Sasaran Dadah Antikoksidia yang Berpotensi)
XIN-WEI LEE1, SU DATT LAM1,2,
MOHD FIRDAUS-RAIH1,2 & KIEW-LIAN WAN1,3*
1School of Biosciences and
Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Department
of Applied Physics, Faculty of Science and Technology,
Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
3Department
of Biological Sciences and Biotechnology, Faculty of Science and Technology,
Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 25 September 2019/Accepted: 20 December 2019
Abstract
Eimeria tenella is an apicomplexan
parasite that causes the economically important disease coccidiosis
in chickens. An estimated loss over $3 billion USD per annum has
been reported. Control of coccidiosis relies on chemotherapy and
vaccination, but drug resistance is common and live vaccines are
relatively expensive. Therefore, there is an urgent need to develop
new drugs to control Eimeria infections. Recent studies have
shown that the pore forming structures of porin play important roles
in many eukaryotic organisms. In this study, we generated and characterised
a putative porin cDNA sequence from E. tenella that we have named Etporin.
Sequence alignments showed that Etporin is 47 % similar
to the putative porin sequence of Toxoplasma
gondii, while a search against the Conserved Domain Database
(CDD) shows that Etporin contains the
Porin3 superfamily domain. Multiple sequence alignment with porin
sequences from various eukaryotic organisms showed that the conserved
VKXKX and GLK/STK motifs are present in Etporin. Analysis of the predicted Etporin
3D structure showed a classic beta barrel structure consisting of 19 beta-strands.
Taken together, these results suggested Etporin
has the potential to be developed into an anticoccidial drug target.
Keywords: Coccidiosis;
drug target; protein structure
ABSTRAK
Eimeria tenella adalah parasit apikompleksa yang menyebabkan
penyakit koksidiosis pada ayam. Anggaran
kerugian ekonomi
melebihi USD $3 bilion setahun telah dilaporkan.
Pengawalan penyakit
ini bergantung kepada kemoterapi dan pemvaksinan, namun kerintangan dadah adalah berleluasa
dan vaksin
hidup adalah mahal
secara relatifnya.
Oleh itu, terdapat
keperluan yang mendesak
untuk membangunkan dadah baru bagi
mengawal jangkitanEimeria.
Kajian terkini
menunjukkan bahawa struktur porin yang terlibat dalam pembentukan liang memainkan peranan penting dalam kebanyakan
organisma eukariot.
Dalam kajian ini,
kami telah menjana
dan mencirikan jujukan cDNA porin putatif daripadaE. tenella, yang telah dinamakan Etporin. Penjajaran jujukan berbilang menunjukkan bahawa Etporin mempunyai 47% keserupaan dengan jujukan porin putatifToxoplasma
gondii, sementara
pencarian terhadap Pangkalan Data Domain Terpelihara
(CDD) menunjukkan bahawa
Etporin mengandungi domain superfamili Porin3. Penjajaran
jujukan berbilang dengan jujukan porin daripada pelbagai
organisma eukariot
turut menunjukkan bahawa motif terpelihara VKXKX
dan GLK/STK hadir pada Etporin. Analisis
struktur ramalan
3D Etporinmenunjukkan struktur tong beta klasik yang terdiri
daripada 19 bebenang-beta.
Secara keseluruhannya, hasil kajian ini
mencadangkan potensi
Etporin untuk dibangunkan
sebagai sasaran
dadah antikoksidia.
Kata kunci: Koksidiosis; sasaran dadah; struktur protein
REFERENCES
Amiruddin, N.,
Lee, X.W., Blake, D.P., Suzuki, Y., Tay, Y.L., Lim, L.S., Tomley,
F.M., Watanabe, J., Sugimoto, C. & Wan, K.L. 2012. Characterisation of full-length cDNA sequences provides insights into the Eimeria tenella transcriptome. BMC Genomics 13: 21.
Bakheet, T.M. & Doig,
A.J. 2009. Properties and identification of human protein drug targets. Bioinformatics 25(4): 451-457.
Blake, D.P. & Tomley,
F.M. 2014. Securing poultry production from the ever-present Eimeria challenge. Trends in Parasitology 30(1): 12-19.
Blake, D.P., Clark, E.L.,
Macdonald, S.E., Thenmozhi, V., Kundu, K., Garg, R., Jatau, I.D., Ayoade, S.,
Kawahara, F. & Moftah, A. 2015. Population, genetic, and antigenic
diversity of the apicomplexan Eimeria
tenella and their relevance to vaccine development. Proceedings of the
National Academy of Sciences U.S.A 112(38): E5343-E5350.
Buchan, D.W.A. & Jones,
D.T. 2019. The PSIPRED protein analysis workbench: 20 years on. Nucleic
Acids Research 47(W1): W402-W407.
Camacho, C., Coulouris, G.,
Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K. & Madden, T.L. 2009.
BLAST+: Architecture and applications. BMC Bioinformatics 10(1): 421.
Chapman, H.D. 2014.
Milestones in avian coccidiosis research: A review. Poultry Science 93(3): 501-511.
Chapman, H.D. &
Jeffers, T.K. 2014. Vaccination of chickens against coccidiosis ameliorates
drug resistance in commercial poultry production. Internation Journal for Parasitology: Drugs and Drug Resistance 4:
214-217.
Dalloul, R.A. &
Lillehoj, H.S. 2006. Poultry coccidiosis: Recent advancements in control
measures and vaccine development. Expert Review of Vaccines 5(1):
143-163.
Dawson, N.L., Sillitoe, I.,
Lees, J.G., Lam, S.D. & Orengo, C.A. 2017. CATH-Gene3D: Generation of the
resource and its use in obtaining structural and functional annotations for
protein sequences. Methods in Molecular Biology 1558: 79-110.
Falda,
M., Toppo, S., Pescarolo, A., Lavezzo, E., Di Camillo, B., Facchinetti, A.,
Cilia, E., Velasco, R. & Fontana, P. 2012. Argot2: A large scale function
prediction tool relying on semantic similarity of weighted Gene Ontology terms. BMC Bioinformatics 13(14): S14.
Gajdács, M. 2019. The
concept of an ideal antibiotic: Implications for drug design. Molecules 24(5): 892.
Goo, S.Y., Lee, H.J., Kim,
W.H., Han, K.L., Park, D.K., Lee, H.J., Kim, S.M., Kim, K.S., Lee, K.H. &
Park, S.J. 2006. Identification of OmpU of Vibrio
vulnificus as a fibronectin-binding protein and its role in bacterial
pathogenesis. Infection and Immunity 74: 5586-5594.
Gordon, D., Abajian, C.
& Green, P. 1998. Consed: A graphical tool for sequence finishing. Genome
Research 8: 195-202.
Hall,
T.A. 1999. BioEdit: A user-friendly biological sequence alignment editor and
analysis program for Windows 95/98/NT. Nucleic
Acids Symposium Series 41: 95-98.
Hejair, H.M.A., Zhu, Y.,
Ma, J., Zhang, Y., Pan, Z., Zhang, W. & Yao, H. 2017. Functional role of
ompF and ompC porins in pathogenesis of avian pathogenic Escherichia coli. Microbial Pathogenesis 107: 29-37.
Jeffers, V. & Sullivan
Jr., W.J. 2012. Lysine acetylation is widespread
on proteins of diverse function and localization in the protozoan parasite Toxoplasma gondii. Eukaryotic Cell 11(6): 735-742.
Katoh, K. & Standley,
D.M. 2013. MAFFT multiple sequence alignment software version 7: Improvements
in performance and usability. Molecular Biology and Evolution 30(4):
772-780.
Kelley, L.A., Mezulis, S.,
Yates, C.M., Wass, M.N. & Sternberg, M.J.E. 2015. The Phyre2 web portal for
protein modeling, prediction and analysis. Nature Protocols 10(6):
845-858.
Kryshtafovych, A.,
Monastyrskyy, B., Fidelis, K., Schwede, T. & Tramontano, A. 2018.
Assessment of model accuracy estimations in CASP12. Proteins: Structure,
Function, and Bioinformatics 86: 345-360.
Loo, S.S., Blake, D.P.,
Mohd-Adnan, A., Mohamed, R. & Wan, K.L. 2010. Eimeria tenella glucose-6-phosphate isomerase: Molecular
characterization and assessment as a target for anti-coccidial control. Parasitology 137: 1169-1177.
Machado, M., Magalhães,
W.C.S., Sene, A., Araújo, B., Faria-Campos, A.C., Chanock, S.J., Scott, L.,
Oliveira, G., Tarazona-Santos, E. & Rodrigues, M.R. 2011. Phred-Phrap
package to analyses tools: A pipeline to facilitate population genetics
re-sequencing studies. Investigative Genetics 2(1): 3. doi: 10.1186/2041-2223-2-3.
Marchler-Bauer, A.,
Derbyshire, M.K., Gonzales, N.R., Lu, S., Chitsaz, F., Geer, L.Y., Geer, R.C.,
He, J., Gwadz, M. & Hurwitz, D.I. 2014. CDD: NCBI’s conserved domain
database. Nucleic Acids Research 43(D1): D222-D226.
Mather, M., Henry, K. &
Vaidya, A. 2006. Mitochondrial drug targets in apicomplexan parasites. Current
Drug Targets 8: 49-60.
McGuffin, L.J., Adiyaman,
R., Maghrabi, A.H.A., Shuid, A.N., Brackenridge, D.A., Nealon, J.O. & Philomina,
L.S. 2019. IntFOLD: An integrated web resource for high performance protein
structure and function prediction. Nucleic Acids Research 47(W1):
W408-W413.
Mi, H., Muruganujan,
A., Ebert, D., Huang, X. & Thomas, P.D. 2019. PANTHER version 14: More genomes,
a new PANTHER GO-slim and improvements in enrichment
analysis tools. Nucleic
Acids Research 47(D1): D419-D426.
Mitchell, A.L., Attwood,
T.K., Babbitt, P.C., Blum, M., Bork, P., Bridge, A., Brown, S.D., Chang, H.Y.,
El-Gebali, S. & Fraser, M.I. 2018. InterPro in 2019: Improving coverage,
classification and access to protein sequence annotations. Nucleic Acids
Research 47(D1): D351-D360.
Noack, S., Chapman, H.D.
& Selzer, P.M. 2019. Anticoccidial drugs of the livestock industry. Parasitology
Research 118(7): 2009-2026.
Nyholm, S.V., Stewart,
J.J., Ruby, E.G. & McFall-Ngai, M.J. 2009. Recognition between symbiotic Vibrio fischeri and the haemocytes of Euprymna scolopes. Environmental Microbiology 11: 483-493.
Peng, J. & Xu, J. 2011.
RaptorX: Exploiting structure information for protein alignments by statistical
inference. Proteins 79(S10): 161-171.
Pusnik, M., Charrière, F.,
Mäser, P., Waller, R.F., Dagley, M.J., Lithgow, T. & Schneider, A. 2008.
The single mitochondrial porin of Trypanosoma
brucei is the main metabolite transporter in the outer mitochondrial
membrane. Molecular Biology and Evolution 26(3): 671-680.
Reid,
A.J., Blake, D.P., Ansari, H.R., Billington, K., Browne, H.P., Bryant, J.,
Dunn, M., Hung, S.S., Kawahara, F., Miranda-Saavedra, D., Malas, T.B., Mourier,
T., Naghra, H., Nair, M., Otto, T.D., Rawlings, N.D., Rivailler, P.,
Sanchez-Flores, A., Sanders, M., Subramaniam, C., Tay, Y.L., Woo, Y., Wu, X.,
Barrell, B., Dear, P.H., Doerig, C., Gruber, A., Ivens, A.C., Parkinson, J.,
Rajandream, M.A., Shirley, M.W., Wan, K.L., Berriman, M., Tomley, F.M. &
Pain, A. 2014. Genomic analysis of the causative agents of coccidiosis in
domestic chickens. Genome Research 24: 1676-1685.
Runke, G., Maier, E.,
O’Neil, J.D. & Benz, R. 2000. Functional characterization of the conserved
'GLK' motif in mitochondrial porin from Neurospora
crassa. Journal of Bioenergetics and Biomembranes 32(6): 563-570.
Sayers, E.W., Agarwala, R.,
Bolton, E.E., Brister, J.R., Canese, K., Clark, K., Connor, R., Fiorini, N.,
Funk, K. & Hefferon, T. 2018. Database resources of the national center for
biotechnology information. Nucleic Acids Research 47(D1): D23-D28.
Shoshan-Barmatz, V.,
Israelson, A., Brdiczka, D. & Sheu, S.S. 2006. The voltage-dependent anion
channel (VDAC): Function in intracellular signalling, cell life and cell death. Current Pharmaceutical Design 12(18): 2249-2270.
Shoshan-Barmatz, V., De
Pinto, V., Zweckstetter, M., Raviv, Z., Keinan, N. & Arbel, N. 2010. VDAC,
a multi-functional mitochondrial protein regulating cell life and death. Molecular
Aspects of Medicine 31(3): 227-285.
Smith, M.D., Petrak, M.,
Boucher, P.D., Barton, K.N., Carter, L., Reddy, G., Blachly-Dyson, E., Forte,
M., Price, J. & Verner, K. 1995. Lysine residues at positions 234 and 236
in yeast porin are involved in its assembly into the mitochondrial outer
membrane. Journal of Biological Chemistry 270(47): 28331-28336.
Sukhan, A. & Hancock,
R.E.W. 1996. The role of specific lysine residues in the passage of anions
through the Pseudomonas aeruginosa porin OprP. Journal of Biological Chemistry 271(35): 21239-21242.
Uziela, K., Shu, N.,
Wallner, B. & Elofsson, A. 2016. ProQ3: Improved model quality assessments
using Rosetta energy terms. Scientific Reports 6: 33509.
Wang, Z., Zhao,
C., Wang, Y., Sun, Z.
& Wang, N. 2018. PANDA:
Protein function prediction using domain architecture and affinity propagation. Scientific
Reports 8(1): 34-84.
Williams, C.J., Headd,
J.J., Moriarty, N.W., Prisant, M.G., Videau, L.L., Deis, L.N., Verma, V.,
Keedy, D.A., Hintze, B.J., Chen, V.B., Jain, S., Lewis, S.M., Arendall, W.B.,
Snoeyink, J., Adams, P.D., Lovell, S.C., Richardson, J.S. & Richardson,
D.C. 2018. MolProbity: More and better reference data for improved all-atom
structure validation. Protein Science 27(1): 293-315.
Williams,
R. 1999. A compartmentalised model for the estimation of the cost of
coccidiosis to the world’s chicken production industry. International Journal for Parasitology 29: 1209-1229.
Yang, J., Yan, R., Roy, A.,
Xu, D., Poisson, J. & Zhang, Y. 2015. The I-TASSER suite: Protein structure
and function prediction. Nature Methods 12(1): 7-8.
Yao, P.P., Firdaus-Raih,
M., Sidek, H.M., Embi, N. & Wan, K.L. 2016. Molecular
characterisation of glycogen synthase kinase-3 from Eimeria tenella. Sains
Malaysiana 45(12): 1947-1957.
Young, M.J., Bay, D.C.
& Hausner, G. 2007. The evolutionary history of mitochondrial porins. BMC
Evolutionary Biology 7(1): 31.
*Corresponding author; email: klwan@ukm.edu.my
|