Sains Malaysiana 49(4)(2020): 755-764

http://dx.doi.org/10.17576/jsm-2020-4904-04

 

 Molecular Characterisation of Eimeria tenella Porin, a Potential Anticoccidial Drug Target

(Pencirian Molekul Eimeria tenella Porin, Sasaran Dadah Antikoksidia yang Berpotensi)

 

XIN-WEI LEE1, SU DATT LAM1,2, MOHD FIRDAUS-RAIH1,2 & KIEW-LIAN WAN1,3*

 

1School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 25 September 2019/Accepted: 20 December 2019

 

Abstract

Eimeria tenella is an apicomplexan parasite that causes the economically important disease coccidiosis in chickens. An estimated loss over $3 billion USD per annum has been reported. Control of coccidiosis relies on chemotherapy and vaccination, but drug resistance is common and live vaccines are relatively expensive. Therefore, there is an urgent need to develop new drugs to control Eimeria infections. Recent studies have shown that the pore forming structures of porin play important roles in many eukaryotic organisms. In this study, we generated and characterised a putative porin cDNA sequence from E. tenella that we have named Etporin. Sequence alignments showed that Etporin is 47 % similar to the putative porin sequence of Toxoplasma gondii, while a search against the Conserved Domain Database (CDD) shows that Etporin contains the Porin3 superfamily domain. Multiple sequence alignment with porin sequences from various eukaryotic organisms showed that the conserved VKXKX and GLK/STK motifs are present in Etporin. Analysis of the predicted Etporin 3D structure showed a classic beta barrel structure consisting of 19 beta-strands. Taken together, these results suggested Etporin has the potential to be developed into an anticoccidial drug target.

 

Keywords: Coccidiosis; drug target; protein structure

 

ABSTRAK

Eimeria tenella adalah parasit apikompleksa yang menyebabkan penyakit koksidiosis pada ayam. Anggaran kerugian ekonomi melebihi USD $3 bilion setahun telah dilaporkan. Pengawalan penyakit ini bergantung kepada kemoterapi dan pemvaksinan, namun kerintangan dadah adalah berleluasa dan vaksin hidup adalah mahal secara relatifnya. Oleh itu, terdapat keperluan yang mendesak untuk membangunkan dadah baru bagi mengawal jangkitanEimeria. Kajian terkini menunjukkan bahawa struktur porin yang terlibat dalam pembentukan liang memainkan peranan penting dalam kebanyakan organisma eukariot. Dalam kajian ini, kami telah menjana dan mencirikan jujukan cDNA porin putatif daripadaE. tenella, yang telah dinamakan Etporin. Penjajaran jujukan berbilang menunjukkan bahawa Etporin mempunyai 47% keserupaan dengan jujukan porin putatifToxoplasma gondii, sementara pencarian terhadap Pangkalan Data Domain Terpelihara (CDD) menunjukkan bahawa Etporin mengandungi domain superfamili Porin3. Penjajaran jujukan berbilang dengan jujukan porin daripada pelbagai organisma eukariot turut menunjukkan bahawa motif terpelihara VKXKX dan GLK/STK hadir pada Etporin. Analisis struktur ramalan 3D Etporinmenunjukkan struktur tong beta klasik yang terdiri daripada 19 bebenang-beta. Secara keseluruhannya, hasil kajian ini mencadangkan potensi Etporin untuk dibangunkan sebagai sasaran dadah antikoksidia.

 

Kata kunci: Koksidiosis; sasaran dadah; struktur protein

 

REFERENCES

Amiruddin, N., Lee, X.W., Blake, D.P., Suzuki, Y., Tay, Y.L., Lim, L.S., Tomley, F.M., Watanabe, J., Sugimoto, C. & Wan, K.L. 2012. Characterisation of full-length cDNA sequences provides insights into the Eimeria tenella transcriptome. BMC Genomics 13: 21.

Bakheet, T.M. & Doig, A.J. 2009. Properties and identification of human protein drug targets. Bioinformatics 25(4): 451-457.

Blake, D.P. & Tomley, F.M. 2014. Securing poultry production from the ever-present Eimeria challenge. Trends in Parasitology 30(1): 12-19.

Blake, D.P., Clark, E.L., Macdonald, S.E., Thenmozhi, V., Kundu, K., Garg, R., Jatau, I.D., Ayoade, S., Kawahara, F. & Moftah, A. 2015. Population, genetic, and antigenic diversity of the apicomplexan Eimeria tenella and their relevance to vaccine development. Proceedings of the National Academy of Sciences U.S.A 112(38): E5343-E5350.

Buchan, D.W.A. & Jones, D.T. 2019. The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Research 47(W1): W402-W407.

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K. & Madden, T.L. 2009. BLAST+: Architecture and applications. BMC Bioinformatics 10(1): 421.

Chapman, H.D. 2014. Milestones in avian coccidiosis research: A review. Poultry Science 93(3): 501-511.

Chapman, H.D. & Jeffers, T.K. 2014. Vaccination of chickens against coccidiosis ameliorates drug resistance in commercial poultry production. Internation Journal for Parasitology: Drugs and Drug Resistance 4: 214-217.

Dalloul, R.A. & Lillehoj, H.S. 2006. Poultry coccidiosis: Recent advancements in control measures and vaccine development. Expert Review of Vaccines 5(1): 143-163.

Dawson, N.L., Sillitoe, I., Lees, J.G., Lam, S.D. & Orengo, C.A. 2017. CATH-Gene3D: Generation of the resource and its use in obtaining structural and functional annotations for protein sequences. Methods in Molecular Biology 1558: 79-110.

Falda, M., Toppo, S., Pescarolo, A., Lavezzo, E., Di Camillo, B., Facchinetti, A., Cilia, E., Velasco, R. & Fontana, P. 2012. Argot2: A large scale function prediction tool relying on semantic similarity of weighted Gene Ontology terms. BMC Bioinformatics 13(14): S14.

Gajdács, M. 2019. The concept of an ideal antibiotic: Implications for drug design. Molecules 24(5): 892.

Goo, S.Y., Lee, H.J., Kim, W.H., Han, K.L., Park, D.K., Lee, H.J., Kim, S.M., Kim, K.S., Lee, K.H. & Park, S.J. 2006. Identification of OmpU of Vibrio vulnificus as a fibronectin-binding protein and its role in bacterial pathogenesis. Infection and Immunity 74: 5586-5594.

Gordon, D., Abajian, C. & Green, P. 1998. Consed: A graphical tool for sequence finishing. Genome Research 8: 195-202.

Hall, T.A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95-98.

Hejair, H.M.A., Zhu, Y., Ma, J., Zhang, Y., Pan, Z., Zhang, W. & Yao, H. 2017. Functional role of ompF and ompC porins in pathogenesis of avian pathogenic Escherichia coli. Microbial Pathogenesis 107: 29-37.

Jeffers, V. & Sullivan Jr., W.J. 2012. Lysine acetylation is widespread on proteins of diverse function and localization in the protozoan parasite Toxoplasma gondii. Eukaryotic Cell 11(6): 735-742.

Katoh, K. & Standley, D.M. 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution 30(4): 772-780.

Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N. & Sternberg, M.J.E. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols 10(6): 845-858.

Kryshtafovych, A., Monastyrskyy, B., Fidelis, K., Schwede, T. & Tramontano, A. 2018. Assessment of model accuracy estimations in CASP12. Proteins: Structure, Function, and Bioinformatics 86: 345-360.

Loo, S.S., Blake, D.P., Mohd-Adnan, A., Mohamed, R. & Wan, K.L. 2010. Eimeria tenella glucose-6-phosphate isomerase: Molecular characterization and assessment as a target for anti-coccidial control. Parasitology 137: 1169-1177.

Machado, M., Magalhães, W.C.S., Sene, A., Araújo, B., Faria-Campos, A.C., Chanock, S.J., Scott, L., Oliveira, G., Tarazona-Santos, E. & Rodrigues, M.R. 2011. Phred-Phrap package to analyses tools: A pipeline to facilitate population genetics re-sequencing studies. Investigative Genetics 2(1): 3. doi: 10.1186/2041-2223-2-3.

Marchler-Bauer, A., Derbyshire, M.K., Gonzales, N.R., Lu, S., Chitsaz, F., Geer, L.Y., Geer, R.C., He, J., Gwadz, M. & Hurwitz, D.I. 2014. CDD: NCBI’s conserved domain database. Nucleic Acids Research 43(D1): D222-D226.

Mather, M., Henry, K. & Vaidya, A. 2006. Mitochondrial drug targets in apicomplexan parasites. Current Drug Targets 8: 49-60.

McGuffin, L.J., Adiyaman, R., Maghrabi, A.H.A., Shuid, A.N., Brackenridge, D.A., Nealon, J.O. & Philomina, L.S. 2019. IntFOLD: An integrated web resource for high performance protein structure and function prediction. Nucleic Acids Research 47(W1): W408-W413.

Mi, H., Muruganujan, A., Ebert, D., Huang, X. & Thomas, P.D. 2019. PANTHER version 14: More genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Research 47(D1): D419-D426.

Mitchell, A.L., Attwood, T.K., Babbitt, P.C., Blum, M., Bork, P., Bridge, A., Brown, S.D., Chang, H.Y., El-Gebali, S. & Fraser, M.I. 2018. InterPro in 2019: Improving coverage, classification and access to protein sequence annotations. Nucleic Acids Research 47(D1): D351-D360.

Noack, S., Chapman, H.D. & Selzer, P.M. 2019. Anticoccidial drugs of the livestock industry. Parasitology Research 118(7): 2009-2026.

Nyholm, S.V., Stewart, J.J., Ruby, E.G. & McFall-Ngai, M.J. 2009. Recognition between symbiotic Vibrio fischeri and the haemocytes of Euprymna scolopes. Environmental Microbiology 11: 483-493.

Peng, J. & Xu, J. 2011. RaptorX: Exploiting structure information for protein alignments by statistical inference. Proteins 79(S10): 161-171.

Pusnik, M., Charrière, F., Mäser, P., Waller, R.F., Dagley, M.J., Lithgow, T. & Schneider, A. 2008. The single mitochondrial porin of Trypanosoma brucei is the main metabolite transporter in the outer mitochondrial membrane. Molecular Biology and Evolution 26(3): 671-680.

Reid, A.J., Blake, D.P., Ansari, H.R., Billington, K., Browne, H.P., Bryant, J., Dunn, M., Hung, S.S., Kawahara, F., Miranda-Saavedra, D., Malas, T.B., Mourier, T., Naghra, H., Nair, M., Otto, T.D., Rawlings, N.D., Rivailler, P., Sanchez-Flores, A., Sanders, M., Subramaniam, C., Tay, Y.L., Woo, Y., Wu, X., Barrell, B., Dear, P.H., Doerig, C., Gruber, A., Ivens, A.C., Parkinson, J., Rajandream, M.A., Shirley, M.W., Wan, K.L., Berriman, M., Tomley, F.M. & Pain, A. 2014. Genomic analysis of the causative agents of coccidiosis in domestic chickens. Genome Research 24: 1676-1685.

Runke, G., Maier, E., O’Neil, J.D. & Benz, R. 2000. Functional characterization of the conserved 'GLK' motif in mitochondrial porin from Neurospora crassa. Journal of Bioenergetics and Biomembranes 32(6): 563-570.

Sayers, E.W., Agarwala, R., Bolton, E.E., Brister, J.R., Canese, K., Clark, K., Connor, R., Fiorini, N., Funk, K. & Hefferon, T. 2018. Database resources of the national center for biotechnology information. Nucleic Acids Research 47(D1): D23-D28.

Shoshan-Barmatz, V., Israelson, A., Brdiczka, D. & Sheu, S.S. 2006. The voltage-dependent anion channel (VDAC): Function in intracellular signalling, cell life and cell death. Current Pharmaceutical Design 12(18): 2249-2270.

Shoshan-Barmatz, V., De Pinto, V., Zweckstetter, M., Raviv, Z., Keinan, N. & Arbel, N. 2010. VDAC, a multi-functional mitochondrial protein regulating cell life and death. Molecular Aspects of Medicine 31(3): 227-285.

Smith, M.D., Petrak, M., Boucher, P.D., Barton, K.N., Carter, L., Reddy, G., Blachly-Dyson, E., Forte, M., Price, J. & Verner, K. 1995. Lysine residues at positions 234 and 236 in yeast porin are involved in its assembly into the mitochondrial outer membrane. Journal of Biological Chemistry 270(47): 28331-28336.

Sukhan, A. & Hancock, R.E.W. 1996. The role of specific lysine residues in the passage of anions through the Pseudomonas aeruginosa porin OprP. Journal of Biological Chemistry 271(35): 21239-21242.

Uziela, K., Shu, N., Wallner, B. & Elofsson, A. 2016. ProQ3: Improved model quality assessments using Rosetta energy terms. Scientific Reports 6: 33509.

Wang, Z., Zhao, C., Wang, Y., Sun, Z. & Wang, N. 2018. PANDA: Protein function prediction using domain architecture and affinity propagation. Scientific Reports 8(1): 34-84. 

Williams, C.J., Headd, J.J., Moriarty, N.W., Prisant, M.G., Videau, L.L., Deis, L.N., Verma, V., Keedy, D.A., Hintze, B.J., Chen, V.B., Jain, S., Lewis, S.M., Arendall, W.B., Snoeyink, J., Adams, P.D., Lovell, S.C., Richardson, J.S. & Richardson, D.C. 2018. MolProbity: More and better reference data for improved all-atom structure validation. Protein Science 27(1): 293-315.

Williams, R. 1999. A compartmentalised model for the estimation of the cost of coccidiosis to the world’s chicken production industry. International Journal for Parasitology 29: 1209-1229.

Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J. & Zhang, Y. 2015. The I-TASSER suite: Protein structure and function prediction. Nature Methods 12(1): 7-8.

Yao, P.P., Firdaus-Raih, M., Sidek, H.M., Embi, N. & Wan, K.L. 2016. Molecular characterisation of glycogen synthase kinase-3 from Eimeria tenella. Sains Malaysiana 45(12): 1947-1957.

Young, M.J., Bay, D.C. & Hausner, G. 2007. The evolutionary history of mitochondrial porins. BMC Evolutionary Biology 7(1): 31.

 

*Corresponding author; email: klwan@ukm.edu.my

 

 

 

 

previous