Sains Malaysiana 49(4)(2020): 775-784
http://dx.doi.org/10.17576/jsm-2020-4904-06
Prodigiosin Serratia marcescens Tidak Bersifat
Toksik terhadap Caenorhabditis
elegans
(Serratia
marcescens Prodigiosin is Non-toxic towards Caenorhabditis elegans)
SIEW-WEI
SEAH1,2, NUR SITI FATIMAH MOHAMAD JAMIL2, YANN-YIN LEE2,
CIN KONG2,3, SHEILA NATHAN1,2 & KIEW-LIAN WAN1,2*
1Jabatan Sains Biologi dan Bioteknologi,
Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
2Pusat Pengajian Biosains dan
Bioteknologi, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
3Jabatan Sains
Bioperubatan, Fakulti Sains, Kampus Universiti Nottingham Malaysia, 43500
Semenyih, Selangor Darul Ehsan, Malaysia
Received:
18 June 2019/Accepted: 18 December 2019
ABSTRAK
Produk semula jadi mikrob adalah sumber molekul yang
berpotensi tinggi untuk penemuan dadah. Prodigiosin iaitu pigmen
merah yang dihasilkan oleh Serratia
marcescens, ialah calon dadah semula jadi kerana telah dilaporkan
mempunyai sifat antimikrob, antimalaria dan antikanser. Dalam kajian
ini, kami telah menilai ketoksikan prodigiosin dengan menggunakan
nematod Caenorhabditis elegans, satu model perumah yang sering
digunakan untuk menilai kepatogenan agen berjangkit dan ketoksikan
produk semula jadi. Untuk menilai ketoksikan prodigiosin, C.
elegans dijangkiti dengan strain penghasil prodigiosin, S.
marcescens Bizio ATCC 274 (Sma 274) dan strain bukan penghasil,
S. marcescens Bizio ATCC 29635 (Sma WF).
Asai kemandirian telah dijalankan di bawah keadaan yang memastikan
penghasilan prodigiosin pada tahap optimum. Menariknya, kinetik
pembunuhan nematod oleh strain S. marcescens yang
berpigmen dan tidak berpigmen tidak
menunjukkan perbezaan yang ketara (Log-rank (Mantel-Cox)
test, p>0.0001), dan ini mencadangkan bahawa prodigiosin bukanlah
molekul yang toksik. Seterusnya,
C. elegans dirawat terus dengan prodigiosin tanpa kehadiran S. marcescens dan
ketoksikan prodigiosin terhadap nematod telah dinilai. Tiada pengurangan kadar kemandirian yang signifikan
diperhatikan apabila C. elegans diberikan ekstrak prodigiosin jika dibandingkan dengan kawalan
yang tidak dirawat (Log-rank (Mantel-Cox) test, p>0.0001). Hasil
ini membuktikan bahawa prodigiosin tidak memberi sebarang kesan
toksik terhadap cacing nematod dewasa. Kesimpulannya, prodigiosin
S. marcescens adalah tidak toksik terhadap perumah C.
elegans, dan ini membuka peluang untuk penyelidikan tentang prodigiosin
sebagai dadah farmaseutik.
Kata kunci: Dadah semula
jadi; ketoksikan; pigmen
bakteria
ABSTRACT
Microbial
natural products are a promising source of molecules for drug discovery.
Prodigiosin, a red microbial pigment produced by Serratia marcescens, is a promising natural drug
candidate due to its reported antimicrobial, antimalarial and anticancer
properties. In this study, we evaluated the toxicity of prodigiosin by using
the nematode Caenorhabditis elegans, a host model
frequently used to evaluate pathogenicity of infectious agents and toxicity of
natural products. To investigate the toxicity of prodigiosin, C. elegans was infected with the prodigiosin-producer S. marcescens Bizio ATCC 274 (Sma
274) and non-prodigiosin producer S. marcescens Bizio
ATCC 29635 (Sma WF). The survival assay was performed
under conditions that ensure optimal prodigiosin production. Intriguingly, the nematode killing kinetics did not differ
significantly between the pigmented and non-pigmented S. marcescens strains (Log-rank (Mantel-Cox) test, p>0.0001), indicating that prodigiosin is not
a toxic molecule. Subsequently, C. elegans were treated directly with prodigiosin in the absence of S.
marcesccens and prodigiosin toxicity on the worms was assessed. No
significant decrease in survival was observed when C. elegans was
treated with prodigiosin extract compared to the untreated control (Log-rank (Mantel-Cox) test, p>0.0001), indicating that prodigiosin does not exert any
toxic effect on adult worms. In conclusion, S.
marcescens prodigiosin is non-toxic towards the C. elegans host,
thus, opening up avenues for research on prodigiosin as a
pharmaceutical drug.
Keywords: Bacterial pigment; natural drug; toxicity
RUJUKAN
Alegado, R.A., Campbell, M.C., Chen, W.C.,
Slutz, S.S. & Tan, M.W. 2003. Characterization of mediators of microbial
virulence and innate immunity using the Caenorhabditis
elegans host-pathogen model. Cellular Microbiology 5(7): 435-444.
Allen, E.G. 1967. Conditions of the colour
change of prodigiosin. Nature 216:
929-931.
Bansal, A., Zhu, L.J., Yen, K. &
Tissenbaum, H.A. 2015. Uncoupling lifespan and healthspan in Caenorhabditis
elegans longevity mutants. Proceedings of the National Academy of
Sciences of the United States of America 112(3): E277-E286.
de Araújo, H.W., Fukushima, K. & Takaki, G.M. 2010.
Prodigiosin production by Serratia
marcescens UCP 1549 using renewable-resources as low cost substrate. Molecules 15: 6931-6940.
Deorukhkar, A.A., Chander, R., Ghosh, S.B.
& Sainis, K.B. 2007. Identification of a red-pigmented bacterium producing
a potent anti-tumor N-alkylated prodigiosin as Serratia marcescens. Research in Microbiology 158(5):
399-404.
Eng, S.A. & Nathan, S. 2015. Curcumin
rescues Caenorhabditis elegans from a Burkholderia pseudomallei infection. Frontiers
in Microbiology 6: 290.
Garsin, D.A., Sifri, C.D., Mylonakis, E.,
Qin, X., Singh, K.V., Murray, B.E., Calderwood, S.B. & Ausubel, F.M. 2001.
A simple model host for identifying Gram-positive virulence factors. Proceedings
of the National Academy of Sciences of the United States of America 98(19):
10892-10897.
Giri, A.V., Anandkumar, N., Muthukumaran,
G. & Pennathur, G. 2004. A novel medium for the enhanced cell growth and
production of prodigiosin from Serratia
marcescens isolated from soil. BMC Microbiology 4: 1-10.
Gulani, C., Bhattacharya, S. & Das, A.
2012. Assessment of process parameters influencing the enhanced production of
prodigiosin from Serratia marcescens and evaluation of its antimicrobial, antioxidant and dyeing potentials. Malaysian
Journal of Microbiology 8(2): 116-122.
Guryanov, I.D., Karamova, N.S., Yusupova,
D.V., Gnezdilov, O.I. & Koshkarova, L.A. 2013. Bacterial pigment
prodigiosin and its genotoxic effect. Russian Journal of Bioorganic
Chemistry 39: 106-111.
Haddix, P.L. & Werner, T.F. 2000.
Spectrophotometric assay of gene expression: Serratia marcescens pigmentation. Bioscene 26: 3-13.
Han, S.B., Chang, W.L., Yeo, D.Y., Jong,
S.K., Ki, H.L., Won, K.Y., Young, K.K., Lee, K., Park, S.K. & Kim, H.M. 2005.
Effective prevention of lethal acute graft-versus-host disease by combined
immunosuppressive therapy with prodigiosin and cyclosporine A. Biochemical
Pharmacology 70(10): 1518-1526.
Harvey, A.L. 2008. Natural products in drug
discovery. Drug Discovery Today 13(19): 894-901.
Hejazi, A., Falkiner, F.R., Microbiology,
C., College, T., Patrick, S. & James, S. 1997. Serratia marcescens. Journal of Medical Microbiology 46(11): 903-912.
Hunt, P.R. 2017. The C. elegans model in toxicity
testing. Journal of Applied Toxicology 37(1): 50-59.
Irazoqui, J.E., Urbach, J.M. & Ausubel,
F.M. 2010. Evolution of host innate defence: Insights from Caenorhabditis elegans and primitive invertebrates. Nature Reviews Immunology 10(1): 47-58.
Jafarzade,
M., Yahya, N.A., Shayesteh, F., Usup, G. & Ahmad, A. 2013. Influence of
culture conditions and medium composition on the production of antibacterial
compounds by marine Serratia sp.
WPRA3. Journal of Microbiology 51(3): 373-379.
Kalesperis, G.S., Prahlad, K.V. &
Lynch, D.L. 1975. Toxigenic studies with the antibiotic pigments from Serratia marcescens. Canadian Journal
of Microbiology 21(2): 213-220.
Kavitha, R., Aiswariya, S. & Ratnavali,
C.M.G. 2010. Anticancer activity of red pigment from Serratia marcescens in human cervix carcinoma. International
Journal of PharmTech Research 2(1): 784-787.
Koehn, F.E. & Carter, G.T. 2005. The
evolving role of natural products in drug discovery. Nature Reviews Drug Discovery 4(3): 206-220.
Kong, C.,
Eng, S.A., Lim, M.P. & Nathan, S. 2016. Beyond traditional antimicrobials:
A Caenorhabditis elegans model for
discovery of novel anti-infectives. Frontiers in Microbiology 7: 1956.
Kong, C., Yehye, W.A., Abd Rahman, N., Tan,
M.W. & Nathan, S. 2014. Discovery of potential anti-infectives against Staphylococcus aureus using a Caenorhabditis elegans infection model. BMC
Complementary and Alternative Medicine 14(1): 4.
Kurz, C.L., Chauvet, S., Andrès, E.,
Aurouze, M., Vallet, I., Michel, G.P.F., Uh, M., Celli, J., Filloux, A., De
Bentzmann, S., Steinmetz, I., Hoffmann, J.A., Finlay, B.B., Gorvel, J.P.,
Ferrandon, D. & Ewbank, J.J. 2003. Virulence factors of the human
opportunistic pathogen Serratia
marcescens identified by in vivo screening. EMBO Journal 22(7): 1451-1460.
Mallo, G.V., Kurz, C.L., Couillault, C.,
Pujol, N., Granjeaud, S., Kohara, Y. & Ewbank, J.J. 2002. Inducible
antibacterial defense system in C.
elegans. Current Biology 12(14): 1209-1214.
Nakashima, T., Kurachi, M., Kato, Y.,
Yamaguchi, K. & Oda, T. 2005. Characterization of bacterium isolated from
the sediment at coastal area of Omura Bay in Japan and several biological
activities of pigment produced by this isolate. Microbiology and Immunology 49(5): 407-415.
Pradeep, B.V., Pradeep, F.S., Angayarkanni,
J. & Palaniswamy, M. 2013. Optimization and production of prodigiosin from Serratia marcescens MBB05 using various
natural substrates. Asian Journal of Pharmaceutical and Clinical Research 6(1): 34-41.
Pradel, E., Zhang, Y., Pujol, N.,
Matsuyama, T., Bargmann, C.I. & Ewbank, J.J. 2007. Detection and avoidance
of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis
elegans. Proceedings of the National Academy of Sciences of the United
States of America 104(7): 2295-2300.
Pujol, N., Link, E.M., Liu, L.X., Kurz,
C.L., Alloing, G., Tan, M.W., Ray, K.P., Solari, R., Johnson, C.D. &
Ewbank, J.J. 2001. A reverse genetic analysis of components of the Toll
signaling pathway in Caenorhabditis
elegans. Current Biology 11(11): 809-821.
Ramani, D.G., Nair, A. & Krithika, K.
2014. Optimization of cultural conditions for the production of prodigiosin by Serratia marcescens and screening for
the antimicrobial activity of prodigiosin. International Journal of Pharma
and Bio Sciences 5(3): 383-392.
Seah, S.W., Nathan, S. & Wan, K.L.
2016. Toxicity evaluation of prodigiosin from Serratia marcescens in a Caenorhabditis
elegans model. AIP Conference Proceedings 1784(1): 020015.
Shapira, M. & Tan, M.W. 2008. Genetic
analysis of Caenorhabditis elegans innate immunity. Dlm. Innate Immunity. Methods in Molecular Biology,
disunting oleh Ewbank, J. & Vivier, E. New Jersey: Humana Press. hlm.
429-442.
Tan, M.W.,
Rahme, L.G., Sternberg, J.A., Tompkins, R.G. & Ausubel, F.M. 1999. Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proceedings
of the National Academy of Sciencesof the United States of America 96(5): 2408-2413.
Webb, D. & Jamison, T.F. 2010.
Continuous flow multi-step organic synthesis. Chemical Science 1(6): 675.
Wilf, N.M. & Salmond, G.P.C. 2012. The
stationary phase sigma factor, RpoS, regulates the production of a carbapenem
antibiotic, a bioactive prodigiosin and virulence in the enterobacterial
pathogen Serratia sp. ATCC 39006. Microbiology 158(3): 648-658.
Yip, C.H., Yarkoni, O., Ajioka, J., Wan,
K.L. & Nathan, S. 2019. Recent advancements in high-level
synthesis of the promising clinical drug, prodigiosin. Applied Microbiology & Biotechnology 104: 1667-1680.
*Corresponding
author; email: klwan@ukm.edu.my
|