Sains Malaysiana 49(4)(2020): 775-784

http://dx.doi.org/10.17576/jsm-2020-4904-06

 

Prodigiosin Serratia marcescens Tidak Bersifat Toksik terhadap Caenorhabditis elegans

 (Serratia marcescens Prodigiosin is Non-toxic towards Caenorhabditis elegans)

 

SIEW-WEI SEAH1,2, NUR SITI FATIMAH MOHAMAD JAMIL2, YANN-YIN LEE2, CIN KONG2,3, SHEILA NATHAN1,2 & KIEW-LIAN WAN1,2*

 

1Jabatan Sains Biologi dan Bioteknologi, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Pusat Pengajian Biosains dan Bioteknologi, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Jabatan Sains Bioperubatan, Fakulti Sains, Kampus Universiti Nottingham Malaysia, 43500 Semenyih, Selangor Darul Ehsan, Malaysia

 

Received: 18 June 2019/Accepted: 18 December 2019

 

ABSTRAK

Produk semula jadi mikrob adalah sumber molekul yang berpotensi tinggi untuk penemuan dadah. Prodigiosin iaitu pigmen merah yang dihasilkan oleh Serratia marcescens, ialah calon dadah semula jadi kerana telah dilaporkan mempunyai sifat antimikrob, antimalaria dan antikanser. Dalam kajian ini, kami telah menilai ketoksikan prodigiosin dengan menggunakan nematod Caenorhabditis elegans, satu model perumah yang sering digunakan untuk menilai kepatogenan agen berjangkit dan ketoksikan produk semula jadi. Untuk menilai ketoksikan prodigiosin, C. elegans dijangkiti dengan strain penghasil prodigiosin, S. marcescens Bizio ATCC 274 (Sma 274) dan strain bukan penghasil, S. marcescens Bizio ATCC 29635 (Sma WF). Asai kemandirian telah dijalankan di bawah keadaan yang memastikan penghasilan prodigiosin pada tahap optimum. Menariknya, kinetik pembunuhan nematod oleh strain S. marcescens yang berpigmen dan tidak berpigmen tidak menunjukkan perbezaan yang ketara (Log-rank (Mantel-Cox) test, p>0.0001), dan ini mencadangkan bahawa prodigiosin bukanlah molekul yang toksik. Seterusnya, C. elegans dirawat terus dengan prodigiosin tanpa kehadiran S. marcescens dan ketoksikan prodigiosin terhadap nematod telah dinilai. Tiada pengurangan kadar kemandirian yang signifikan diperhatikan apabila C. elegans diberikan ekstrak prodigiosin jika dibandingkan dengan kawalan yang tidak dirawat (Log-rank (Mantel-Cox) test, p>0.0001). Hasil ini membuktikan bahawa prodigiosin tidak memberi sebarang kesan toksik terhadap cacing nematod dewasa. Kesimpulannya, prodigiosin S. marcescens adalah tidak toksik terhadap perumah C. elegans, dan ini membuka peluang untuk penyelidikan tentang prodigiosin sebagai dadah farmaseutik.

 

Kata kunci: Dadah semula jadi; ketoksikan; pigmen bakteria

 

ABSTRACT

Microbial natural products are a promising source of molecules for drug discovery. Prodigiosin, a red microbial pigment produced by Serratia marcescens, is a promising natural drug candidate due to its reported antimicrobial, antimalarial and anticancer properties. In this study, we evaluated the toxicity of prodigiosin by using the nematode Caenorhabditis elegans, a host model frequently used to evaluate pathogenicity of infectious agents and toxicity of natural products. To investigate the toxicity of prodigiosin, C. elegans was infected with the prodigiosin-producer S. marcescens Bizio ATCC 274 (Sma 274) and non-prodigiosin producer S. marcescens Bizio ATCC 29635 (Sma WF). The survival assay was performed under conditions that ensure optimal prodigiosin production. Intriguingly, the nematode killing kinetics did not differ significantly between the pigmented and non-pigmented S. marcescens strains (Log-rank (Mantel-Cox) test, p>0.0001), indicating that prodigiosin is not a toxic molecule. Subsequently, C. elegans were treated directly with prodigiosin in the absence of S. marcesccens and prodigiosin toxicity on the worms was assessed. No significant decrease in survival was observed when C. elegans was treated with prodigiosin extract compared to the untreated control (Log-rank (Mantel-Cox) test, p>0.0001), indicating that prodigiosin does not exert any toxic effect on adult worms. In conclusion, S. marcescens prodigiosin is non-toxic towards the C. elegans host, thus, opening up avenues for research on prodigiosin as a pharmaceutical drug.

 

Keywords: Bacterial pigment; natural drug; toxicity

 

RUJUKAN

Alegado, R.A., Campbell, M.C., Chen, W.C., Slutz, S.S. & Tan, M.W. 2003. Characterization of mediators of microbial virulence and innate immunity using the Caenorhabditis elegans host-pathogen model. Cellular Microbiology 5(7): 435-444.

Allen, E.G. 1967. Conditions of the colour change of prodigiosin. Nature 216: 929-931.

Bansal, A., Zhu, L.J., Yen, K. & Tissenbaum, H.A. 2015. Uncoupling lifespan and healthspan in Caenorhabditis elegans longevity mutants. Proceedings of the National Academy of Sciences of the United States of America 112(3): E277-E286.

de Araújo, H.W., Fukushima, K. & Takaki, G.M. 2010. Prodigiosin production by Serratia marcescens UCP 1549 using renewable-resources as low cost substrate. Molecules 15: 6931-6940.

Deorukhkar, A.A., Chander, R., Ghosh, S.B. & Sainis, K.B. 2007. Identification of a red-pigmented bacterium producing a potent anti-tumor N-alkylated prodigiosin as Serratia marcescens. Research in Microbiology 158(5): 399-404.

Eng, S.A. & Nathan, S. 2015. Curcumin rescues Caenorhabditis elegans from a Burkholderia pseudomallei infection. Frontiers in Microbiology 6: 290.

Garsin, D.A., Sifri, C.D., Mylonakis, E., Qin, X., Singh, K.V., Murray, B.E., Calderwood, S.B. & Ausubel, F.M. 2001. A simple model host for identifying Gram-positive virulence factors. Proceedings of the National Academy of Sciences of the United States of America 98(19): 10892-10897.

Giri, A.V., Anandkumar, N., Muthukumaran, G. & Pennathur, G. 2004. A novel medium for the enhanced cell growth and production of prodigiosin from Serratia marcescens isolated from soil. BMC Microbiology 4: 1-10.

Gulani, C., Bhattacharya, S. & Das, A. 2012. Assessment of process parameters influencing the enhanced production of prodigiosin from Serratia marcescens and evaluation of its antimicrobial, antioxidant and dyeing potentials. Malaysian Journal of Microbiology 8(2): 116-122.

Guryanov, I.D., Karamova, N.S., Yusupova, D.V., Gnezdilov, O.I. & Koshkarova, L.A. 2013. Bacterial pigment prodigiosin and its genotoxic effect. Russian Journal of Bioorganic Chemistry 39: 106-111.

Haddix, P.L. & Werner, T.F. 2000. Spectrophotometric assay of gene expression: Serratia marcescens pigmentation. Bioscene 26: 3-13.

Han, S.B., Chang, W.L., Yeo, D.Y., Jong, S.K., Ki, H.L., Won, K.Y., Young, K.K., Lee, K., Park, S.K. & Kim, H.M. 2005. Effective prevention of lethal acute graft-versus-host disease by combined immunosuppressive therapy with prodigiosin and cyclosporine A. Biochemical Pharmacology 70(10): 1518-1526.

Harvey, A.L. 2008. Natural products in drug discovery. Drug Discovery Today 13(19): 894-901.

Hejazi, A., Falkiner, F.R., Microbiology, C., College, T., Patrick, S. & James, S. 1997. Serratia marcescens. Journal of Medical Microbiology 46(11): 903-912.

Hunt, P.R. 2017. The C. elegans model in toxicity testing. Journal of Applied Toxicology 37(1): 50-59.

Irazoqui, J.E., Urbach, J.M. & Ausubel, F.M. 2010. Evolution of host innate defence: Insights from Caenorhabditis elegans and primitive invertebrates. Nature Reviews Immunology 10(1): 47-58.

Jafarzade, M., Yahya, N.A., Shayesteh, F., Usup, G. & Ahmad, A. 2013. Influence of culture conditions and medium composition on the production of antibacterial compounds by marine Serratia sp. WPRA3. Journal of Microbiology 51(3): 373-379.

Kalesperis, G.S., Prahlad, K.V. & Lynch, D.L. 1975. Toxigenic studies with the antibiotic pigments from Serratia marcescens. Canadian Journal of Microbiology 21(2): 213-220.

Kavitha, R., Aiswariya, S. & Ratnavali, C.M.G. 2010. Anticancer activity of red pigment from Serratia marcescens in human cervix carcinoma. International Journal of PharmTech Research 2(1): 784-787.

Koehn, F.E. & Carter, G.T. 2005. The evolving role of natural products in drug discovery. Nature Reviews Drug Discovery 4(3): 206-220.

Kong, C., Eng, S.A., Lim, M.P. & Nathan, S. 2016. Beyond traditional antimicrobials: A Caenorhabditis elegans model for discovery of novel anti-infectives. Frontiers in Microbiology 7: 1956.

Kong, C., Yehye, W.A., Abd Rahman, N., Tan, M.W. & Nathan, S. 2014. Discovery of potential anti-infectives against Staphylococcus aureus using a Caenorhabditis elegans infection model. BMC Complementary and Alternative Medicine 14(1): 4.

Kurz, C.L., Chauvet, S., Andrès, E., Aurouze, M., Vallet, I., Michel, G.P.F., Uh, M., Celli, J., Filloux, A., De Bentzmann, S., Steinmetz, I., Hoffmann, J.A., Finlay, B.B., Gorvel, J.P., Ferrandon, D. & Ewbank, J.J. 2003. Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening. EMBO Journal 22(7): 1451-1460.

Mallo, G.V., Kurz, C.L., Couillault, C., Pujol, N., Granjeaud, S., Kohara, Y. & Ewbank, J.J. 2002. Inducible antibacterial defense system in C. elegans. Current Biology 12(14): 1209-1214.

Nakashima, T., Kurachi, M., Kato, Y., Yamaguchi, K. & Oda, T. 2005. Characterization of bacterium isolated from the sediment at coastal area of Omura Bay in Japan and several biological activities of pigment produced by this isolate. Microbiology and Immunology 49(5): 407-415.

Pradeep, B.V., Pradeep, F.S., Angayarkanni, J. & Palaniswamy, M. 2013. Optimization and production of prodigiosin from Serratia marcescens MBB05 using various natural substrates. Asian Journal of Pharmaceutical and Clinical Research 6(1): 34-41.

Pradel, E., Zhang, Y., Pujol, N., Matsuyama, T., Bargmann, C.I. & Ewbank, J.J. 2007. Detection and avoidance of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America 104(7): 2295-2300.

Pujol, N., Link, E.M., Liu, L.X., Kurz, C.L., Alloing, G., Tan, M.W., Ray, K.P., Solari, R., Johnson, C.D. & Ewbank, J.J. 2001. A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Current Biology 11(11): 809-821.

Ramani, D.G., Nair, A. & Krithika, K. 2014. Optimization of cultural conditions for the production of prodigiosin by Serratia marcescens and screening for the antimicrobial activity of prodigiosin. International Journal of Pharma and Bio Sciences 5(3): 383-392.

Seah, S.W., Nathan, S. & Wan, K.L. 2016. Toxicity evaluation of prodigiosin from Serratia marcescens in a Caenorhabditis elegans model. AIP Conference Proceedings 1784(1): 020015.

Shapira, M. & Tan, M.W. 2008. Genetic analysis of Caenorhabditis elegans innate immunity. Dlm. Innate Immunity. Methods in Molecular Biology, disunting oleh Ewbank, J. & Vivier, E. New Jersey: Humana Press. hlm. 429-442.

Tan, M.W., Rahme, L.G., Sternberg, J.A., Tompkins, R.G. & Ausubel, F.M. 1999. Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proceedings of the National Academy of Sciencesof the United States of America 96(5): 2408-2413.

Webb, D. & Jamison, T.F. 2010. Continuous flow multi-step organic synthesis. Chemical Science 1(6): 675.

Wilf, N.M. & Salmond, G.P.C. 2012. The stationary phase sigma factor, RpoS, regulates the production of a carbapenem antibiotic, a bioactive prodigiosin and virulence in the enterobacterial pathogen Serratia sp. ATCC 39006. Microbiology 158(3): 648-658.

Yip, C.H., Yarkoni, O., Ajioka, J., Wan, K.L. & Nathan, S. 2019. Recent advancements in high-level synthesis of the promising clinical drug, prodigiosin. Applied Microbiology & Biotechnology 104: 1667-1680.

 

*Corresponding author; email: klwan@ukm.edu.my

 

 

 

previous