Sains Malaysiana 49(4)(2020): 785-792
http://dx.doi.org/10.17576/jsm-2020-4904-07
Interferon Gamma Release Assay, A
Powerful Tool for the Detection of Human and Bovine Tuberculosis in the Greater
Cairo Area Compared to Other Diagnostic Tools
(AsaiPelepasan Gama Interferon, Suatu Alat Penting untuk Pengesanan Tuberkulosis Manusia dan Bovin di Kawasan Kaherah Besar Berbanding dengan Alat Diagnostik Lain)
MIRIHAN A. METWALLY1, AYMEN S. YASSIN2*,
EMAD M. RIAD3, HAYAM M. HAMOUDA1 & MAGDY A. AMIN2
1Department of
Microbiology, National Organization of Drug Control and Research (NODCAR),
Giza, Egypt
2Department of
Microbiology and Immunology, Faculty of Pharmacy, Cairo University
Cairo, 11562, Egypt
3Department of
Bacteriology, Animal Health Research Institute, Giza, Egypt
Received:
24 January 2019/Accepted: 20 December 2019
ABSTRACT
Rapid detection is essential for
the elimination and control of tuberculosis (TB) worldwide. Our study aimed to show the
current and actual patterns of human and bovine TB distribution in the Greater
Cairo Area community by the application of different TB diagnostic tools to
individuals and farm animals with suspected TB. Both sputum and blood specimens
were collected from 150 suspected human cases in the community. Sputum samples
were examined using direct microscopy (Ziehl-Neelsen stain), culture on Lowenstein-Jensen medium, and real-time PCR. Blood samples
were used for interferon gamma release assay (IGRA). In addition, lymph nodes
and blood samples were collected from 57 tuberculin-positive animals. Lymph
nodes were examined using direct microscopy (Ziehl-Neelsen stain), culture on Lowenstein-Jensen medium, and real-time PCR. Animal blood
samples were also tested with IGRA. Sensitivity and specificity as well as
positive and negative predictive values were calculated for all tests. The
results showed that for both human and animal samples, IGRA provided the most
accurate estimates of current TB infection compared to other tests.
Furthermore, IGRA had the highest sensitivity and was the most convenient,
proving its superiority compared to traditional methods in showing true
levels of TB dissemination. This work shows that
IGRA is a powerful tool for detection of TB in suspected humans and farm
animals and should be incorporated into routine TB screening programs, which
require more than one test.
Keywords: Egypt; interferon gamma release assay; Mycobacterium species; TB Real-time PCR
ABSTRAK
Pengesanan pantas adalah penting untuk
penghapusan dan pengawalan tuberkulosis (TB) di seluruh dunia. Kajian kami
bertujuan untuk menunjukkan corak terkini dan sebenar taburan TB manusia dan bovin di komuniti kawasan Kaherah Besar dengan penerapan alat
diagnostik TB yang berbeza kepada individu dan haiwan ternakan yang disyaki TB. Kedua-dua spesimen kahak dan darah dikumpulkan
daripada 150 kes manusia yang disyaki dalam kalanganmasyarakat. Sampel kahak diperiksa menggunakan
mikroskopi langsung (stain Ziehl-Neelsen), kultur pada medium Lowenstein-Jensen dan
PCR masa nyata. Sampel darah digunakan untuk asai pelepasan gama interferon
(IGRA). Sebagai tambahan, nodus limfa dan sampel darah dikumpulkan daripada 57 haiwan positif tuberkulin. Nodus limfa diperiksa menggunakan mikroskopi langsung (stain Ziehl-Neelsen), dikultur pada medium
Lowenstein-Jensen dan PCR masa nyata. Sampel darah haiwan juga diuji dengan
IGRA. Kesensitifan dan kekhususan serta nilai ramalan
positif dan negatif dihitung untuk semua ujian. Hasil kajian menunjukkan bahawa untuk sampel manusia dan haiwan,
IGRA memberikan anggaran yang paling tepat mengenai jangkitan TB semasa
berbanding dengan ujian lain. Selanjutnya, IGRA mempunyai kesensitifan tertinggi dan paling
mudah, membuktikan keunggulannya dibandingkan dengan kaedah tradisi dalam menunjukkan tahap penyebaran TB yang
sebenarnya. Kertas ini menunjukkan bahawa
IGRA adalah alat penting untuk mengesan TB pada manusia dan haiwan ternakan yang disyaki dan harus dimasukkan ke
dalam program pemeriksaan rutin TB, yang memerlukan lebih daripada satu ujian.
Kata kunci: Asai pelepasan gama interferon; Mesir; Mycobacterium species; PCR masa-nyata TB
REFERENCES
Abu-Taleb, A.M.F., El-Sokkary,
R.H. & El Tarhouny, S.A. 2011. Interferon-gamma
release assay for detection of latent tuberculosis infection in casual and
close contacts of tuberculosis cases. Eastern
Mediterranean Health Journal 17(10): 749-753.
Ai, J.W., Ruan, Q.L.,
Liu, Q.H. & Zhang, W.H. 2016. Review: Updates on the risk factors for
latent tuberculosis reactivation and their managements. Emerging Microbes and Infections 3: 5. DOI:
10.1038/emi.2016.10.
American Thoracic Society. 2000. Targeted
tuberculin testing and treatment of latent tuberculosis infection. American Journal of Respiratory and Critical
Care Medicine 161: S221-S247.
Anderson, P., Munk,
M.E., Pollock, J.M. & Doherty, T.M. 2000. Specific immune-based diagnosis
of tuberculosis. Lancet 356: 1099-1104.
Ani, A., Okpe, S., Akambi, M., Ejelionu, E., Yakubu, B., Owolodun, O., Ekeh, P., Oche, A., Tyen, D. & Idoko, J. 2009.
Comparison of a DNA based PCR method with conventional methods for the
detection of M. tuberculosis in Jos, Nigeria. The Journal of Infection in Developing Countries 3: 470-475.
Ayele, W.Y., Neill, S.D., Zinsstag,
J., Weiss, M.G. & Pavlik, I. 2004. Bovine
tuberculosis: An old disease but a new threat to Africa. Int. J. Tuberc. Lung Dis. 8: 924-937.
Ben Kahla, I., Boschiroli, M.L., Souissi, F., Cherif, N., Benzarti, M., Boukadida, J. & Hammami, S.
2011. Isolation and molecular characterization of Mycobacterium bovis from raw milk in
Tunisia African. Health Sciences 11(1): S2-S5.
Bianchi, G.M., Veneruso,
G.M.D., Becciolini, L., Azzari,
C., Chiappini, E., de Martino & Maurizio, M.D.
2009. Interferon-gamma release assay improves the diagnosis of tuberculosis in
children. Pediatric Infectious Disease
Journal 28: 510-514.
Broekmans, J.F., Migliori,
G.B., Rieder, H.L., Leesz,
J., Ruutu, P., Loddenkemper,
R. & Raviglione, M.C. 2002. European framework
for tuberculosis, control and elimination in countries with a low incidence. European Respiratory Journal 19:
765-775.
Cosivi, O., Grange, J.M., Daborn,
C.J., Raviglione, M.C., Fujikura, T., Cousins, D.,
Robinson, R.A., Huchzermeyer, H.F., de Kantor, I.
& Meslin, F.X. 1998. Zoonotic tuberculosis due to Mycobacterium bovis in developing countries. Emerging Infectious Disease 4: 59-70.
de kantor, I.N., Kim,
S.J., Frieden, T., Laszlo, A., Luelmo,
F., Norval, P.Y., Rieder,
H., Valenzuela, P. & Weyer, K. 1998. Laboratory Services in Tuberculosis Control: Microscopy Part II. Italy: World Health Organization.
de Waard, J.H. & Robledo, J. 2007. Conventional diagnostic methods. In Tuberculosis.
From Basic Science to Patient Care, edited by Palomino, J.C., Leão, S.C. & Ritacco, V. 1st edition. www.TuberculosisTextbook.com. pp. 401-424.
El-Sokkary, R.H., Abu-Taleb, A.M.,
El-Seifi, O.S., Zidan,
H.E., Mortada, E.M., El-Hossary,
D. & Farag, S.E. 2015. Assessing the prevalence
of latent tuberculosis among health care providers Zagazig City, Egypt using tuberculin skin test and QuantiFERON-TB
gold in-tube test. Cent. Eur. J. Public
Health 4: 324-330.
Gordon, S.V. & Marcel, A.B. 2015. Comparative Mycobacteriology of the
Mycobacterium Tuberculosis Complex. Wallingford, UK: Publisher CAB
International.
Gormley, E., Doyle, M.B., McGill, K., Costello, E.,
Good, M. & Collins, J.D. 2004. The effect of the tuberculin test and the
consequences of a delay in blood culture on the sensitivity of a
gamma-interferon assay for the detection of Mycobacterium bovis infection in cattle. Vet. Immunol. Immunopathol. 102: 413-420.
Hassan, A., Fattouh,
M., Atteya, I., Mohammadeen,
H. & Ahmed, H. 2014. Validation of a rapid tuberculosis PCR assay for
detection of MDR-TB patients in Sohag University
Hospital. Journal of Applied &
Environmental Microbiology 2: 65-69.
Hiban, N.A.A. & Hasan, H.A. 2015. Prevalence of
latent tuberculosis infection among multinational health care workers in Muhayil Saudi Arabia. The
Egyptian Journal of Bronchology 9: 183-187.
Issar, S. 2003. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin. Microbial Rev. 16(3): 463-496.
Jiang, X.Y., Wang, C.F., Wang, C.F., Zhang, P.J. & He, Z.Y. 2006. Cloning and expression of Mycobacterium bovis secreted protein MPB83 in Escherichia
coli. J. Biochem.
& Molecul. Biol. 39: 22-25.
Lalvani, A. 2007. Diagnosing tuberculosis infections in
the 21st century. New tools to tackle an old enemy. Chest 131: 1898-1906.
Marks, J. 1972. Ending the routine Guinea pigs
test. Tubercle. 53: 31-34.
Mazurek, G.H., Jereb, J.,
Vernon, A., LoBue, P., Goldberg, S. & Kenneth
Castro. 2010. Updated guidelines for using interferon gamma release assays to
detect Mycobacterium tuberculosis infection - United States. MMWR Recomm. Rep. 59(5): 1-25.
Müller, B., Dürr, S.,
Alonso, S., Hattendorf, J., Laisse, C.J.M., Parsons,
S.D.C., van Helden, P.D. & Zinsstag,
J. 2013. Zoonotic Mycobacterium bovis-induced tuberculosis in humans. Emerging Infectious Diseases 19:
899-908.
Müller, B. 2009. Mycobacterium bovis at the animal-human
interface: A problem, or not. Veterinary
Microbiology 140: 371-381.
Patama Monkongdee, McCarthy, K.D., Cain, K.P., Theerawit Tasaneeyapan, Nguyen H. Dung, Nguyen T.N. Lan, Nguyen T.B. Yen, Nipat Teeratakulpisarn, Nibondh Udomsantisuk, Heilig, C. & Varma, J.K. 2009. Yield of acid-fast
smear and mycobacterial culture for tuberculosis diagnosis in people with human
immunodeficiency virus. Am. J. Respir. Crit. Care Med. 180(9): 903-908.
Petroff, S.A. 1915. A new and rapid method for
isolation and cultivation of tubercle bacilli directly for the sputum and feaces. J. Exp. Med. 21: 38-42.
Ratledge, C. & Stanford, J. 1982. The Biology of the Mycobacteria. London: Academic Press. p. 544.
Ravn, P., Munk, M.E.,
Andersen, A.B., Lundgren, B., Lundgren, J.D., Nielsen, L.N., Kok-Jensen, A., Andersen, P. & Weldingh,
K. 2005. Prospective evaluation of a whole-blood test using Mycobacterium
tuberculosis-specific antigens ESAT-6 and CFP-10 for diagnosis of active
tuberculosis. Clin. Diagn. Lab. Immunol. 12: 491-496.
Taylor, G.M., Murphy, E., Hopkins, R., Rutland, P. & Chistov, Y. 2007. First report of Mycobacterium bovis DNA in human remains from the iron age. Microbiol. 153:
1243-1249.
Taylor, M.J., Hughes, M.S., Skuce,
R.A. & Neill, S.D. 2001. Detection of Mycobacterium bovis in bovine clinical specimens using
real-time fluorescence and fluorescence resonance energy transfer probe
rapid-cycle PCR. Journal of Clinical
Microbiology 39: 1272-1278.
Thoen, C.O., Steele, J.H. & Gilsdorf,
M.J. 2006. Mycobacterium bovis infection in animal and human. Can. Vet. J. 49(7): 688.
Tortoli, E. & Palomino, J.C. 2007. New diagnostic
methods. In Tuberculosis. From Basic
Science to Patient Care, edited by Palomino, J.C., Leão,
S.C. & Ritacco, V. 1st edition. www.TuberculosisTextbook.com. pp. 441-486.
Van, S., Hermans, P.,
Haas, P., Roll, D. & Van, D. 1991. Occurrence and stability of insertion
sequences in Mycobacterium tuberculosis complex strains: Evaluation of an insertion
sequence-dependent DNA polymorphism as a tool in the epidemiology of
tuberculosis. J. of Clinical Microbiology 29(11): 2578-2586.
Ward, L.J., Brown, J.C. & Davey, G.P. 1995.
Detection of dairy Leuconostoc strains using the
polymerase chain reaction. Letters in
Applied Microbiology 20: 204-208.
World Health Organization. 2015. Global Tuberculosis Report. Geneva: WHO. Available at
http://www.who.int/tb/publications/global_report/en/. Accessed on 23 November 2015.
*Corresponding author; email:
aymen.yassin@pharma.cu.edu.eg
|