Sains Malaysiana 49(4)(2020): 809-816

http://dx.doi.org/10.17576/jsm-2020-4904-10

 

3D Titanium Scaffold Properties and Osteogenesis of Stem Cells

(Sifat PerancahTitanium 3D danOsteogenesis Sel Stem)

 

ROHAYA MEGAT ABDUL WAHAB1*, MANAL NABIL HAGAR1, NUR ATMALIYA LUCHMAN1, FARINAWATI YAZID1 & SHAHRUL HISHAM ZAINAL ARIFFIN2

 

1Centre for Family Oral Health, Universiti Kebangsaan Malaysia, Jalan Raja Muda Aziz, 50300 Kuala Lumpur, Federal Territory, Malaysia

 

2Centre for Biotechnology and Functional Food, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 8 February 2019/Accepted: 6 December 2019

 

ABSTRACT

Studies on porous titanium for use in dental applications have been growing due to their excellent properties such as low elastic modulus, biocompatibility and excellent strength. The porosity and pore size of titanium scaffold play an important role in bone formation. Thus, this paper reviews the properties of titanium scaffold and the relationship between the porosity and pore size of titanium with the osteogenesis of stem cells in respect of its mechanical properties and biological assessment.  From this review, it was found that a pore size of less than 300 µm allows for good vascularization that can lead to direct osteogenesis without an interphase of cartilage formation. The minimum requirement for pore size is approximately 100 µm to assist in the migration requirement, cell size and transport, as a smaller pore size causes a hypoxic condition and induces osteochondral formation before osteogenesis, while a pore size from 500 to 1000 µm affects the differentiation of the stem cells. In addition, it was found that high porosity induces osteogenesis. The average porosity of the scaffold for cell proliferation was between 25-50 µm. In conclusion, highly porous titanium is a useful modern material for creating 3D structures for bone regeneration and implant fixation.

 

Keywords: Bone regeneration; pore size; porosity; stem cell; titanium scaffold

 

ABSTRAK

Kajian mengenai titanium berliang telah berkembang pesat dalam aplikasi pergigian disebabkan oleh ciri-ciri istimewanya seperti modulus kenyal, bioserasi dan kekuatan bahan. Keliangan dan saiz liang perancah titanium memainkan peranan yang penting dalam proses pembentukan tulang. Ciri-ciri perancah titanium dan hubungan antara keliangan dan saiz liang titanium dengan osteogenesis sel stem serta perkaitannya dengan sifat mekanik dan penilaian biologi diulas dalam artikel ini. Daripada ulasan ini, didapati bahawa saiz liang yang kurang daripada 300 μm membenarkan vaskularisasi yang baik yang boleh menyebabkan osteogenesis secara langsung tanpa interfasa daripada pembentukan rawan. Saiz liang minimum yang diperlukan adalah lebih kurang 100 μmdan ia sesuai bagi saiz sel dan pengangkutanserta membantu dalam migrasi sel kerana saiz liang yang lebih kecil boleh menyebabkan keadaan hipoksia dan merangsang pembentukan osteokondral sebelum osteogenesis. Saiz liang antara 500 hingga 1000 μm pula memberi kesan kepada pembezaan sel stem. Selain daripada itu, didapati bahawa peningkatan keliangan juga dapat merangsang osteogenesis. Purata keliangan bagi perancah untuk membantu proliferasi sel adalah antara 25-50 μm. Kesimpulannya, titanium yang mempunyai keliangan yang tinggi sesuai menjadi bahan moden untuk pembentukan struktur 3D bagi penjanaan semula tulang dan penetapan implan.

 

Kata kunci: Keliangan; penjanaan semula tulang; perancah titanium; saiz liang; sel stem

 

REFERENCES

Alaribe, F.N., Manoto, S.L. & Motaung, S.C. 2016. Scaffolds from biomaterials: Advantages and limitations in bone and tissue engineering. Biologia 71(4): 353-366.

Amemiya, T., Nakaoka, K., Hamada, Y. & Hayakawa, T. 2012. Effect of porosity of titanium web on cortical bone response. Journal of Hard Tissue Biology 21(2): 103-108.

Arifin, A., Sulong, A.B., Fun, L.C. & Yani, I. 2017. Porous titanium alloy/hydroxyapatite composite using powder compaction route. Journal of Mechanical Engineering and Sciences 11(2): 2679-2692.

Asadi-Eydivand, M., Solati-Hashjin, M. & Abu Osman, N.A. 2018. Mechanical behavior of calcium sulfate scaffold prototypes built by solid free-form fabrication. Rapid Prototyping Journal 24(8): 1392-1400.

Aslam, M., Ahmad, F., Yusoff, P.B., Muhamad, N., Raza, M.R. & Shirazi, M.I. 2014. Effects of admixed titanium on densification of 316 L stainless steel powder during sintering. Volume 13. 4th International Conference on Production, Energy and Reliability, ICPER 2014 - Kuala Lumpur, Malaysia.

Barbas, A., Bonnet, A.S., Lipinski, P., Pesci, R. & Dubois, G. 2012. Development and mechanical characterization of porous titanium bone substitutes. Journal of the Mechanical Behavior of Biomedical Materials 9: 34-44.

Chen, X.B., Li, Y.C., Hodgson, P.D. & Wen, C. 2009. The importance of particle size in porous titanium and nonporous counterparts for surface energy and its impact on apatite formation. Acta Biomaterialia 5(6): 2290-2302.

Chocholata, P., Kulda, V. & Babuska, V. 2019. Fabrication of scaffolds for bone-tissue regeneration. Materials 12(4): 568.

Dabrowski, B., Swieszkowski, W., Godlinski, D. & Kurzydlowski, K.J. 2010. Highly porous titanium scaffolds for orthopaedic applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials 95(1): 53-61.

Fernando, S., McEnery, M. & Guelcher, S. 2016. Polyurethanes for bone tissue engineering. Advances in Polyurethane Biomaterials 16: 481-501.

Fujibayashi, S., Neo, M., Kim, H.M., Kokubo, T. & Nakamura, T. 2004. Osteoinduction of porous bioactive titanium metal. Biomaterials 25(3): 443-450.

Götz, H., Müller, M., Emmel, A., Holzwarth, U., Erben, R. & Stangl, R. 2004. Effect of surface finish on the osseointegration of laser-treated titanium alloy implants. Biomaterials 25(18): 4057-4064.

Guyer, R.D., Abitbol, J.J., Ohnmeiss, D.D. & Yao, C. 2016. Evaluating osseointegration into a deeply porous titanium scaffold: A biomechanical comparison with PEEK and allograft. Spine 41(19): 1146-1150.

Hayakawa, T., Takahashi, K., Okada, H., Yoshinari, M., Hara, H., Mochizuki, C., Yamamoto, H. & Sato, M. 2008. Effect of thin carbonate-containing apatite (CA) coating of titanium fiber mesh on trabecular bone response. Journal of Materials Science: Materials in Medicine 19(5): 2087-2096.

Hibi, H., Yamada, Y., Ueda, M. & Endo, Y. 2006. Alveolar cleft osteoplasty using tissue-engineered osteogenic material. International Journal of Oral and Maxillofacial Surgery 35(6): 551-555.

Hoppe, A. & Boccaccini, A. 2014. Bioactive glass foams for tissue engineering applications. Biomedical Foams for Tissue Engineering Applications 7: 191-212.

Jemat, A., Ghazali, M.J., Razali, M. & Otsuka, Y. 2018. Microstructural, surface roughness and wettability of titanium alloy coated by YZP-30wt.% tiO2 for dental application. Jurnal Teknologi 80(2): 45-50.

Karageorgiou, V. & Kaplan, D. 2005. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27): 5474-5491.

Kujala, S., Ryhänen, J., Danilov, A. & Tuukkanen, J. 2003. Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel-titanium bone graft substitute. Biomaterials 24(25): 4691-4697.

Li, R.H. & Wozney, J.M. 2001. Delivering on the promise of bone morphogenetic proteins. Trends in Biotechnology 19(7): 255-265.

Liu, L.S., Thompson, A.Y., Heidaran, M.A., Poser, J.W. & Spiro, R.C. 1999. An osteoconductive collagen/hyaluronate matrix for bone regeneration. Biomaterials 20(12): 1097-1108.

Loh, Q.L. & Choong, C. 2013. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Engineering Part B: Reviews 19(6): 485-502.

Luthringer, B., Ali, F., Akaichi, H., Feyerabend, F., Ebel, T. & Willumeit, R. 2013. Production, characterisation, and cytocompatibility of porous titanium-based particulate scaffolds. Journal of Materials Science: Materials in Medicine 24(10): 2337-2358.

Mediaswanti, K., Wen, C., Ivanova, E., Berndt, C., Malherbe, F., Pham, V. & Wang, J. 2013. A review on bioactive porous metallic biomaterials. J. Biomim. Biomater. Tissue Eng. 18: 104. doi:10.4172/1662-100X.1000104.

Meng, W., Zhou, Y., Zhang, Y., Cai, Q., Yang, L. & Wang, B. 2013. Effects of hierarchical micro/nano-textured titanium surface features on osteoblast-specific gene expression. Implant Dentistry 22(6): 656-661.

O'brien, F.J. 2011. Biomaterials & scaffolds for tissue engineering. Materials Today 14(3): 88-95.

Otsuki, B., Takemoto, M., Fujibayashi, S., Neo, M., Kokubo, T. & Nakamura, T. 2006. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: Three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials 27(35): 5892-5900.

Pattanayak, D.K., Fukuda, A., Matsushita, T., Takemoto, M., Fujibayashi, S., Sasaki, K., Nishida, N., Nakamura, T. & Kokubo, T. 2011. Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments. Acta Biomaterialia 7(3): 1398-1406.

Rakhmatia, Y.D., Ayukawa, Y., Furuhashi, A. & Koyano, K. 2013. Current barrier membranes: Titanium mesh and other membranes for guided bone regeneration in dental applications. Journal of Prosthodontic Research 57(1): 3-14.

Raza, M.R., Sulong, A.B., Muhamad, N., Akhtar, M.N. & Rajabi, J. 2015. Effects of binder system and processing parameters on formability of porous Ti/HA composite through powder injection molding. Materials & Design 87: 386-392.

Simon, J.L., Roy, T.D., Parsons, J.R., Rekow, E.D., Thompson, V.P., Kemnitzer, J. & Ricci, J.L. 2003. Engineered cellular response to scaffold architecture in a rabbit trephine defect. Journal of Biomedical Materials Research 66(2): 275-282.

Stangl, R., Rinne, B., Kastl, S. & Hendrich, C. 2001. The influence of pore geometry in cp Ti-implants-A cell culture investigation. Eur. Cell Mater. 2(2): 1-9.

Sul, Y.T., Johansson, C.B., Petronis, S., Krozer, A., Jeong, Y., Wennerberg, A. & Albrektsson, T. 2002. Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: The oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials 23(2): 491-501.

Tamaddon, M., Samizadeh, S., Wang, L., Blunn, G. & Liu, C. 2017. Intrinsic osteoinductivity of porous titanium scaffold for bone tissue engineering. International Journal of Biomaterials 2017: 5093063.

Thavornyutikarn, B., Chantarapanich, N., Sitthiseripratip, K., Thouas, G.A. & Chen, Q. 2014. Bone tissue engineering scaffolding: Computer-aided scaffolding techniques. Progress in Biomaterials 3(2-4): 61-102.

Torres-Sanchez, C., Al Mushref, F., Norrito, M., Yendall, K., Liu, Y. & Conway, P.P. 2017. The effect of pore size and porosity on mechanical properties and biological response of porous titanium scaffolds. Materials Science and Engineering: C 77: 219-228.

Van Bael, S., Chai, Y.C., Truscello, S., Moesen, M., Kerckhofs, G., Van Oosterwyck, H., Kruth, J.P. & Schrooten, J. 2012. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta biomaterialia 8(7): 2824-2834.

van den Dolder, J. & Jansen, J.A. 2007. Titanium fiber mesh: A nondegradable scaffold material. Engineering of Functional Skeletal Tissues 3: 69-80.

Van der Stok, J., Van der Jagt, O.P., Amin Yavari, S., De Haas, M.F., Waarsing, J.H., Jahr, H., Van Lieshout, E.M., Patka, P., Verhaar, J.A. & Zadpoor, A.A. 2013. Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects. Journal of Orthopaedic Research 31(5): 792-799.

Vehof, J.W., de Ruijter, A.E., Spauwen, P.H. & Jansen, J.A. 2001. Influence of rhBMP-2 on rat bone marrow stromal cells cultured on titanium fiber mesh. Tissue Engineering 7(4): 373-383.

Wysocki, B., Idaszek, J., Szlązak, K., Strzelczyk, K., Brynk, T., Kurzydłowski, K.J. & Święszkowski, W. 2016. Post processing and biological evaluation of the titanium scaffolds for bone tissue engineering. Materials 9(3): E197. doi: 10.3390/ma9030197.

Yazid, M.D., Zainal Ariffin, S.H., Senafi, S., Zainal Ariffin, Z. & Megat Abdul Wahab, R. 2011. Stem cell heterogeneity of mononucleated cells from murine peripheral blood: Molecular analysis. The Scientific World Journal 11: 2150-2159.

 

*Corresponding author; email: rohaya_megat@ukm.edu.my

 

 

 

previous