Sains Malaysiana 49(4)(2020): 859-870
http://dx.doi.org/10.17576/jsm-2020-4904-15
A New Crescent Moon Visibility Criteria using Circular
Regression Model: A Case Study of Teluk Kemang, Malaysia
(Kriteria Baru Kebolehnampakan Bulan Sabit menggunakan Model Regresi Berkeliling: Suatu Kajian Kes Teluk Kemang, Malaysia)
NAZHATULSHIMA AHMAD1*, MOHD SAIFUL ANWAR
MOHD NAWAWI2, MOHD ZAMBRI ZAINUDDIN2,
ZUHAILI MOHD NASIR3, ROSSITA MOHAMAD YUNUS3
& IBRAHIM MOHAMED3
1Space Physics
Laboratory, Department of Physics, Faculty of Science, University of Malaya, 50603
Kuala Lumpur, Federal Territory, Malaysia
2Islamic Astronomy
Programme, Department of Fiqh and Usul,
Academy of Islamic Studies, University of Malaya, 50603 Kuala Lumpur,
Federal Territory, Malaysia
3Institute of Mathematical
Sciences, University of Malaya, 50603 Kuala Lumpur, Federal Territory,
Malaysia
Received: 22
October 2019/Accepted: 13 January 2020
ABSTRACT
Many astronomers
have studied lunar crescent visibility throughout history. Its importance is
unquestionable, especially in determining the local Islamic calendar and the
dates of important Islamic events. Different criteria have
been used to predict the possible visibility of the crescent moon during
the sighting process. However, so far, the visibility models used are based on linear statistical theory, whereas the useful
variables in this study are in the circular unit. Hence, in this paper, we
propose new visibility tests using the circular regression model, which will
split the data into three visibility categories; visible to the unaided eye,
may need optical aid and not visible. We formulate the procedure to separate
the categories using the residuals of the fitted circular regression model. We
apply the model on 254 observations collected at Baitul Hilal Teluk Kemang Malaysia, starting from March 2000 to date. We show
that the visibility test developed based on elongation of the moon (dependent
variable) and altitude of the moon (independent variable) gives the smallest
misclassification rate. From the statistical analysis, we propose the
elongation of the moon 7.28°, altitude of the moon of 3.33° and arc of vision
of 3.74° at sunset as the
new crescent visibility criteria. The new criteria have a significant impact on
improving the chance of observing the crescent moon and in producing a more
accurate Islamic calendar in Malaysia.
Keywords: Circular
regression; crescent moon; lunar month; q-test; visibility
criteria
ABSTRAK
Ramai ahli astronomi telah mengkaji kebolehnampakan bulan sabit sepanjang sejarah. Kepentingannya tidak dapat
dipertikaikan, terutama dalam menentukan kalendar Islam tempatan dan tarikh
peristiwa penting Islam. Kriteria yang berbeza telah digunakan untuk meramalkan
kemungkinan kebolehnampakan bulan sabit semasa proses pencerapan.
Walau bagaimanapun, setakat ini, model kebolehnampakan yang digunakan adalah berdasarkan teori statistik linear, sedangkan pemboleh
ubah penting dalam kajian ini adalah dalam sukatan membulat. Oleh itu, dalam kertas ini, kami mencadangkan ujian kebolehnampakan baru menggunakan model regresi berkeliling,
yang akan membahagikan data menjadi tiga kategori kebolehnampakan; dapat dilihat dengan mata kasar, mungkin memerlukan bantuan
optik dan tidak kelihatan. Kami memformulasi prosedur tersebut untuk memisahkan kategori menggunakan sisa model regresi berkeliling
yang sesuai. Kami mengaplikasikan model tersebut dalam 254 pemerhatian yang dikumpulkan di Baitul Hilal Teluk
Kemang Malaysia, bermula dari Mac 2000 sehingga kini. Kami menunjukkan
bahawa ujian kebolehnampakan dibangunkan berdasarkan pemanjangan bulan
(pemboleh ubah bersandar) dan ketinggian bulan (pemboleh ubah bebas) memberikan
kadar salah pengkelasan terkecil. Daripada analisis
statistik, kami mencadangkan pemanjangan bulan pada 7.28°, ketinggian bulan 3.33°
dan aras penglihatan 3.74° ketika matahari terbenam sebagai kriteria baharu kebolehnampakanbulan sabit. Kriteria baharu ini memberi kesan yang
besar dalam meningkatkan peluang melihat bulan sabit dan menghasilkan kalendar
Islam yang lebih tepat di Malaysia.
Kata kunci: Bulan
lunar; bulan
sabit; kriteria kebolehnampakan; regresi berkeliling; ujian q
REFERENCES
Alkasadi, N.A., Ali, H.M., Abuzaid, Safwati Ibrahim, Mohd Irwan Yusoff, (2018). Outliers detection in multiple circular regression model via DFBETAcstatistic. International
Journal of Applied Engineering 3(11): 9083-9090.
Alrefay, T., Alsaab, S., Alshehri, F., Hadadi, A., Alotaibi, M., Almutari, K. & Mubarki, Y. 2018. Analysis of observations of earliest visibility of the lunar crescent. The Observatory 138: 267-291.
Best, D.J. & Fisher, N.I. 1981. The bias of the
maximum likelihood estimators of the von Mises-Fisher concentration parameters. Communication in Statistics - Simulations and Computations 10(5): 394-502.
Bruin, F. 1977. The first visibility of the lunar
crescent. Vistas in Astronomy 21(4):
331-358.
Danjon, A. 1936. Ann. L’Obs.
Strasbourg 3: 139-181.
Fatoohi, L.J., Stephenson, F.R. & Al-Dargazelli,
S.S. 1998. The Danjon limit of first visibility of
the lunar crescent. The Observatory:
A Review of Astronomy 118: 65-72.
Fisher, N.I. 1993. Statistical
Analysis of Circular Data. London: Cambridge University Press.
Fotheringham, J.K. 1910. On the smallest visible phase
of the moon. Monthly Notices of the Royal Astronomical Society 70: 527-531.
Guessoum, N. & Meziane, K. 2001.
Visibility of the thin lunar crescent: The sociology of an astronomical problem
(A case study). Journal of Astronomical History & Heritage 4: 1-14
Hasanzadeh, A. 2012. Study of Danjon limit in moon crescent sighting. Astrophysics
and Space Science 339: 211-221.
Hoffman, R.R. 2003. Observing the new moon. Mon. Not. R. Astron. Soc. 340:
1039-1051.
Hogendijk, J.P. 1988. New light on the lunar visibility table
of Yaʿqub ibn Tariq. Journal of Near Eastern Studies 47: 95-104.
Hussin, A.G., Fieller, N.R.J.
& Stillman, E.C. 2004. Linear regression for circular
variables with application to directional data. Journal of Applied Science and Technology 8: 1-6.
Ilyas Mohammad. 1994. Lunar crescent visibility criterion
and Islamic calendar. Quarterly
Journal of the Royal Astronomical Society 35: 425-461.
Ilyas Mohammad. 1988. Limiting altitude separation in the
new moons 1st visibility criterion. Astronomy
& Astrophysics 206: 133-135.
Ilyas Mohammad. 1983. The Danjon limit of lunar visibility: A re-examination. The Journal of the Royal Astronomical Society of Canada 77:
214-219.
Jammalamadaka, S.R. &
SenGupta, A. 2001. Topics
in Circular Statistics.
London: World Scientific.
Jammalamadaka, S.R. & Sarma,
Y.R. 1993. Circular regression. In Statistical
Sciences and Data Analysis, edited by Matusita,
K. Utrecht, Netherlands: VSP. pp. 109-128.
Kim, S. & Rifat, M.M.I. 2019. Diagnostic analysis of a circular-circular regression model using asymmetric or asymmetric bi-modal circular errors. Communications in Statistics-Theory
and Methods. DOI: 10.1080/03610926.2019.1676448.
Mardia, K.V. & Jupp, P.E.
1972. Directional Statistics. London:
John Wiley and Sons.
Maunder, E.W. 1911. On the smallest visible phase of
the moon. The Journal of the British
Astronomical Association 21: 355-362.
McNally, D. 1983. The length of the lunar
crescent. Quarterly Journal of the
Royal Astronomical Society 24: 417-429.
Odeh, M.Sh.
2004. New criterion for lunar crescent visibility. Experimental Astronomy 18: 39-64.
Raharto, M., Sopwan, N.,
Hakim, M. & Sugianto, Y.
2019. New approach on study of new young crescent (Hilal)
visibility and new month of Hijri calendar. Conference Series, IOP Conf. Series: Journal of
Physics: Conf. Series. p. 1170.
Schaefer, B.E. 1996. Lunar crescent visibility. Q.J.R. Astr. Soc. 37: 759-768.
Schaefer, B.E. 1991. Length of the lunar
crescent. Quarterly Journal of the
Royal Astronomical Society 32: 265-277.
Schaefer, B.E. 1988. Visibility of the Lunarcrescent. Quarterly
Journal of the Royal Astronomical
Society 29: 511-523.
Sultan, A.H.
2007. First visibility of the lunar crescent: Beyond Danjon's
limit. The Observatory:
A Review of Astronomy 127: 53-59.
Yallop, B.D. 1997. A Method for Predicting the First Sighting
of the New Crescent Moon. Cambridge: Nautical Almanac Office,
1997. NAO Technical Notes, nr. 69.
Zubairi, Y.Z., Hussain, F. & Hussin,
A.G. 2008. An alternative analysis of two circular variables via graphical
representation: An application to the Malaysian wind data. Computer and Information Science 1(4): 3-8.
*Corresponding author; email: n_ahmad@um.edu.my
|