Sains Malaysiana 49(4)(2020): 885-898
http://dx.doi.org/10.17576/jsm-2020-4904-18
Pengujian
Hipotesis Berbilang: Perbandingan Simulasi Monte Carlo Berdasarkan Ralat Jenis
I
(Multiple Hypothesis Testing:
Comparison of Monte Carlo Simulation Based on Type-1 Error)
NORA MUDA* & NOR SYAFAWATI
JANI
Jabatan
Sains Matematik, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 16 July 2019/Accepted:
27 December 2019
ABSTRAK
Pengujian hipotesis berbilang
merupakan pengujian yang melibatkan ujian serentak lebih daripada satu hipotesis dan digunakan untuk mengawal kadar
ralat berkumpulan (FWER) dan kadar penemuan palsu (FDR) dengan meminimumkan
Ralat Jenis I. Kajian ini bertujuan untuk membuat perbandingan ujian pengujian hipotesis berbilang bagi ujian-t iaitu
pengujian antara dua kumpulan sampel melalui perbandingan antara ujian Bonferroni, ujian Holm, ujian Hochberg,
ujian Hommel, ujian Benjamini-Hochberg dan ujian Benjamini-Yekutieli dengan mengikut keadaan yang tertentu iaitu nilai α, bilangan ujian, m dan jenis taburan yang berbeza. Perbandingan pengujian hipotesis berbilang
berdasarkan kebarangkalian Ralat Jenis I bagi kes kadar ralat berkumpulan
(FWER) dan kadar penemuan palsu (FDR) dijalankan berdasarkan simulasi Monte
Carlo. Didapati, bagi kumpulan min yang sama iaitu {0,0} bagi kesemua keadaan,
Ralat Jenis I bernilai sifar. Hal ini kerana kesemua ujian gagal menolak
hipotesis nol dan terbukti menyatakan kesemua hipotesis nol adalah benar.
Selain itu, aras keertian 0.01 tidak sesuai digunakan bagi kesemua keadaan
kerana aras keertian ini dikatakan sangat jitu. Bagi kumpulan min yang berbeza
iaitu {0,1}, ujian Benjamini-Yekutieli sesuai digunakan bagi mengawal
kadar penemuan palsu (FDR) kerana dapat meminimumkan Ralat Jenis I dengan baik
berbanding dengan ujian lain. Manakala bagi kadar ralat berkumpulan (FWER),
ujian Hommel sesuai digunakan berbanding dengan ujian lain. Hal ini
kerana ujian ini dapat mengawal dengan baik dan meminimumkan Ralat Jenis I.
Kata
kunci: Kadar penemuan
palsu; kadar ralat berkumpulan; ujian Benjamini-Hochberg; ujian Bonferroni; ujian Holm
ABSTRACT
Multiple
hypothesis testing is a test that involves more than one hypothesis test which
run simultaneously and is used to control group error rate (FWER) and false
discovery rate (FDR) by minimizing Type I Error. This study aims to compare
multiple hypothesis testing tests for t-test; test between two group samples by
comparing between Bonferroni test, Holm test, Hochberg test, Hommel test,
Benjamini-Hochberg test, and Benjamini-Yekutieli test
according to specific conditions namely α value, number of tests, m and
different types of distribution. Comparison of multiple hypothesis testing
based on probability of Type I error for group error rate (FWER) and false
discovery rate (FDR) was performed based on Monte Carlo simulation. It is found
that for the group with that same mean {0,0} in all cases,
the Type I error is zero. This is because all tests failed to reject the null
hypothesis and proved that all null hypotheses were true. Also, the
significance level of 0.01 is not appropriate for all situations because it is
said to be very accurate. For different mean groups of {0,1}, the
Benjamini-Yekutieli test is best used to control the false discovery rate (FDR)
as it minimizes Type I error better than other tests. For group error rates
(FWER), the Hommel test is applicable compared to other tests. This is because
this test can control and minimize Type I Errors.
Keywords: Benjamini-Hochberg test; Bonferroni test; false
discovery rate (FDR); group error rate (FWER); Holm test
REFERENCES
Abdi, H. 2010. Holm's
sequential Bonferroni procedure. Dlm. Encyclopedia of Research
Design, disunting oleh Salkind, N. Thousand Oaks, CA: Sage.
Abdul Rahman Othman. & Lai Choo
Heng. 2014. Sensitivity analysis of the refinement to the Mann-Whitney Test. Sains Malaysiana 43(7): 1095-1100.
Aickin, M. & Gensler, H. 1996.
Adjusting for multiple testing when reporting research results: The Bonferroni
vs Holm methods. America Journal of
Public Health 86(5): 726-728.
Benjamini, Y. & Yekutieli, D.
2001. The control of the false discovery rate in multiple testing under
dependency. The Annals of Statistics 29: 1165-1188.
Benjamini, Y. & Hochberg, Y.
1995. Controlling the false discovery rate: A practical and powerful approach
to multiple testing. Journal of the Royal
Statistical Society. Series B (Methodological) 57(1): 289-300.
Bradley, J.V. 1978. Robustness. British Journal of Mathematics and
Statistical Psychology 31: 144-151.
Dudoit, S., Shaffer, J.P. &
Boldrick, J.C. 2003. Multiple hypothesis testing in microarray experiments. Statistical Science 18(1): 71-103.
Godfrey, K. 1985. Comparing the
means of several groups. New England
Journal of Medicine 311: 1450-1456.
Hochberg, Y. 1988. A Sharper
Bonferroni procedure for multiple tests of significance. Biometrika 75(4): 800-802.
Holm, S. 1979. A simple
sequentially rejective multiple test procedure. Scandanian Journal of Statistics 6: 65-70.
Hommel, G. 1988. A stagewise
rejective multiple test procedure based on a modified Bonferroni test. Biometrika 75(2): 383-386.
Marcus, R., Eric, P. & Gabriel,
K.R. 1976. On
closed testing procedures with special reference to ordered analysis of
variance. Biometrika 63(3): 655-660.
Nor Aishah Ahad, Abdul Rahman
Othman. & Sharipah Soaad Syed Yahaya. 2012. Performance of two-samples
pseudo-median procedure. Sains Malaysiana 41(9): 1149-1154.
Pocock, S.J., Hughes, M.D. &
Lee, R.J. 1987. Statistical problems in the reporting of clinical trials. New England Journal of Medicine 317:
426-432.
Perneger, T.V. 1998. What’s wrong with Bonferroni adjustments. BMJ 316(7139): 1236-1238.
Simes, R.J. 1986. An improved
Bonferroni procedure for multiple tests of significance. Biometrika 73(3): 751-754.
Sinclair, J.K., Taylor, P.J. &
Hobbs, S.J. 2013. Alpha level adjustments for multiple dependent variable
analyses and their applicability: A review. World
Academic Press, World Academic Union 7(1): 017-020.
Smith, D.G., Clemens, J., Crede,
W., Harvey, M. & Gracely, E.J. 1987. Impact of multiple comparisons in
randomized clinical trials. The American
Journal of Medicine 83(3): 545-550.
Wright, S.P. 1992. Adjusted
P-values for simultaneous inference. Biometrics 48: 1005-1013.
*Corresponding
author; email: noramuda@ukm.edu.my
|