Sains Malaysiana 49(4)(2020): 919-928

http://dx.doi.org/10.17576/jsm-2020-4904-21

 

Limit Theorem for A Semi-Markovian Random Walk with General Interference of Chance

(Had Teorem untuk Jalan Rawak Semi-Markovan dengan Kemungkinan Gangguan Umum)

 

TAHIR KHANIYEV1,3 & OZLEM ARDIC SEVINC1,2*

 

1Department of Industrial Engineering, TOBB University of Economics and Technology, 06560, Ankara, Turkey

 

2Department of Structural Economic Research, Central Bank of the Republic of Turkey, 06050, Altindag, Ankara, Turkey

 

3Institute of Control Systems, Azerbaijan National Academy of Sciences, AZ 1141, Baku, Azerbaijan

 

Received: 29 June 2019/Accepted: 6 December 2019

 

ABSTRACT

A semi-Markovian random-walk process with general interference of chance was constructed and investigated. The key point of this study is the assumption that the discrete interference of chance has a general form. Under some conditions, it is proved that the process is ergodic, and the exact forms of the ergodic distribution and characteristic function of the process are obtained. By using basic identity for random walks, the characteristic function of the process is expressed by the characteristic function of a boundary functional. Then, two-term asymptotic expansion for the characteristic function of the standardized process is found. Using this asymptotic expansion, a weak convergence theorem for the ergodic distribution of the standardized process is proved, and the limiting form for the ergodic distribution is obtained. The obtained limit distribution coincides with the limit distribution of the residual waiting time of the renewal process generated by a sequence of random variables expressing the discrete interference of chance.

 

Keywords: Discrete interference of chance; ergodic distribution; limit distribution; random walk; weak convergence

 

ABSTRAK

Proses jalan rawak semi-Markovan dengan kemungkinan gangguan umum telah dibangunkan dan dikaji. Isi utama kajian ini adalah andaian bahawa kemungkinan gangguan diskrit mempunyai bentuk umum. Dalam beberapa keadaan, terbukti bahawa prosesnya ergodik dan bentuk asal taburan ergodik serta fungsi pencirian prosesnya diperoleh. Dengan menggunakan identiti asas untuk jalan rawak, fungsi pencirian prosesnya diungkapkan oleh fungsi pencirian sempadan fungsian. Kemudian, pengembangan asimptotik dua penggal untuk fungsi pencirian piawai prosesnya ditemui. Dengan menggunakan pengembangan asimtotik ini, teorem penumpuan yang lemah untuk taburan ergodik daripada proses piawai dibuktikan dan bentuk pembatasan untuk taburan ergodik diperoleh. Taburan had yang diperoleh bertepatan dengan had taburan sisa masa menunggu proses pembaharuan yang dihasilkan oleh jujukan pemboleh ubah rawak yang mengungkapkan kemungkinan gangguan diskrit.

 

Kata kunci: Had taburan; jalan rawak; kemungkinan gangguan diskrit; penumpuan yang lemah; taburan ergodik

 

REFERENCES

Aliyev, R., Ardic, O. & Khaniyev, T. 2016. Asymptotic approach for a renewal-reward process with a general interference of chance. Communication in Statistics-Theory and Methods 45(14): 4237-4248.

Aliyev, R., Khaniyev, T. & Kesemen, T. 2009. Asymptotic expansions for the moments of the semi-Markovian random walk with Gamma distributed interference of chance. Communication in Statistics-Theory and Methods 39(1): 130-143.

Aliyev, R., Kucuk, Z. & Khaniyev, T. 2010. Three-term asymptotic expansions for the moments of the random walk with triangular distributed interference of chance. Applied Mathematical Modelling 34(11): 3599-3607.

Alsmeyer, G. 1991. Some relations between harmonic renewal measure and certain first passage times. Statistics and Probability Letters 12(1): 19-27.

Başar, E. 2017. Aalen’s additive, Cox proportional hazards and the Cox-Aalen model: Application to kidney transplant data. Sains Malaysiana 46(3): 469-476.

Blanchet, J. & Glynn, P. 2006. Complete corrected diffusion approximations for the maximum of a random walk. The Annals of Applied Probability 16(2): 951-983.

Brown, M. & Solomon, H.A. 1975. Second-order approximation for the variance of a renewal-reward process. Stochastic Processes and Their Applications 3(3): 301–314.

Chang, J.T. & Peres, Y. 1997. Ladder heights, Gaussian random walks and the Riemann zeta function. Annals of Probability 25(2): 787-802.

Feller, W. 1971. Introduction to Probability Theory and Its Applications II. New York: John Wiley.

Gihman, I.I. & Skorohod, A.V. 1975. Theory of Stochastic Processes II. Berlin: Springer.

Gökpınar, E., Khaniyev, T. & Gamgam, H. 2015. Asymptotic properties of the straight line estimator for a renewal function. Sains Malaysiana 44(7): 1041-1051.

Gökpınar, F., Khaniyev, T. & Mammadova, Z. 2013. The weak convergence theorem for the distribution of the maximum of a Gaussian random walk and approximation formulas for its moments. Methodology and Computing in Applied Probability 15: 333-347.

Hanalioglu, Z. & Khaniyev, T. 2019. Limit theorem for a semi-Markovian stochastic model of type (s,S). Hacettepe Journal of Mathematics and Statistics 48(2): 605-615.

Hanalioglu, Z., Khaniyev, T. & Agakishiyev, I. 2015. Weak convergence theorem for the ergodic distribution of a random walk with normal distributed interference of chance. TWMS Journal of Applied and Engineering Mathematics 5(1): 61-73.

Janseen, A.J.E.M. & Van Leeuwarden, J.S.H. 2007. On Lerch’s transcendent and the Gaussian random walk. Annals of Applied Probability 17(2): 421-439.

Kesemen, T., Aliyev, R. & Khaniyev, T. 2013. Limit distribution for a semi-Markovian random walk with Weibull distributed interference of chance. Journal of Inequalities and Applications doi.org/10.1186/1029-242X-2013-134.

Khaniyev, T. & Mammadova, Z. 2006. On the stationary characteristics of the extended model of type (s,S) with Gaussian distribution of summands. Journal of Statistical Computation and Simulation 76(10): 861-874.

Khaniyev, T. 2003. Some asymptotic results for the semi-Markovian random walk with a special barrier. Turkish Journal of Mathematics 27: 251-272.

Khaniyev, T., Kesemen, T., Aliyev, R. & Kokangul, A. 2008. Asymptotic expansions for the moments of a semi-Markovian random walk with exponential distributed interference of chance. Statistics and Probability Letters 78(6): 785-793.

Lotov, V.I. 1996. On some boundary crossing problems for Gaussian random walks. Annals of Probability 24(4): 2154-2171.

Lukacs, E. 1970. Characteristic Functions. London: Griffin.

Nagaev, S.V. 2010. Exact expressions for the moments of ladder heights. Siberian Mathematical Journal 51(4): 675-695.

Rogozin, B.A. 1964. On the distribution of the first jump. Theory of Probability and Its Applications 9(3): 450-465.

Samsuddin, S. & Ismail, N. 2019. Markov chain model and stationary test: A case study on Malaysia Social Security (SOCSO). Sains Malaysiana 48(3): 697-701.

Siegmund, D. 1979. Corrected diffusion approximations in certain random walk problems. Advances in Applied Probability 11(4): 701-719.

 

*Corresponding author; email: ardicozlem@gmail.com

 

 

 

 

previous