Sains Malaysiana 49(4)(2020):
941-952
http://dx.doi.org/10.17576/jsm-2020-4904-23
Defaultable Bond Pricing under the Jump
Diffusion Model with Copula Dependence Structure
(Penentuan Harga
Bon Boleh Mungkir di Bawah Model Resapan Lompat dengan Struktur Kebersandaran
Kopula)
SITI NORAFIDAH MOHD RAMLI1* & JIWOOK
JANG2
1Department of Mathematical Sciences, Faculty of
Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Department of Actuarial Studies and Business Analytics,
Macquarie Business School, Macquarie University, North Ryde NSW 2109 Sydney, Australia
Received: 12 October 2019/Accepted: 23 December 2019
ABSTRACT
We study the
pricing of a defaultable bond under various dependence structure captured by
copulas. For that purpose, we use a bivariate jump-diffusion process to
represent a bond issuer's default intensity and the market short rate of
interest. We assume that each jump of both variables occur simultaneously, and
that their sizes are dependent. For these simultaneous jumps and their sizes, a
homogeneous Poisson process and three copulas, which are a
Farlie-Gumbel-Morgenstern copula, a Gaussian copula, and a Student t-copula are
used, respectively. We use the joint Laplace transform of the integrated risk
processes to obtain the expression of the defaultable bond price with
copula-dependent jump sizes. Assuming exponential marginal distributions, we
compute the zero coupon defaultable bond prices and their yields using the
three copulas to illustrate the bond. We found that the bond price values are
the lowest under the Student-t copula, suggesting that a dependence structure
under the Student-t copula could be a suitable candidate to depict a riskier
environment. Additionally, the hypothetical term structure of interest rates
under the risky environment are also upward sloping, albeit with yields greater
than 100%, reflecting a higher compensation required by investors to lend funds
for a longer period when the financial market is volatile.
Keywords: Bivariate jump-diffusion model; credit risk;
default intensity; short rate; zero coupon bond
ABSTRAK
Kertas ini
mengkaji penentuan harga bon boleh mungkir dengan kadar faedah pendek dan nilai
keamatan ingkar penerbit bon, dengan struktur kebersandaran yang diwakili oleh
kopula. Untuk tujuan itu, proses resapan-lompat bivariat digunakan untuk
mewakili proses keamatan ingkar penerbit bon dan kadar faedah pendek pasaran.
Setiap lompatan oleh kedua-dua pemboleh ubah diandaikan berlaku serentak, dan
saiznya adalah bersandaran antara satu sama lain. Bagi mewakili proses lompatan
serentak dan struktur kebersandaran saiznya, proses Poisson yang homogen dan
tiga kopula, iaitu kopula Farlie-Gumbel-Morgenstern, Gaussian, dan student-t
digunakan. Transformasi Laplace tercantum bagi proses risiko bersepadu
digunakan untuk mendapatkan persamaan harga bon boleh mungkir dengan saiz
lompatan faktor yang bersandar dengan struktur kopula. Harga bon boleh mungkir
tanpa kupon dan kadar hasilnya dihitung di bawah tiga jenis kopula dengan
taburan marginal eksponen untuk mewakili kebersandaran antara kedua-dua faktor.
Kajian mendapati bahawa nilai harga bon adalah yang paling rendah apabila faktor
kebersandaran digambarkan oleh kopula student-t, yang menunjukkan bahawa
struktur kebersandaran di bawah kopula student-t adalah lebih sesuai untuk
menggambarkan persekitaran yang berisiko berbanding kopula FGM dan Gaussian. Di
samping itu, walaupun struktur masa kadar faedah bagi jangka panjang di bawah
persekitaran yang berisiko juga menunjukkan pola menaik, kadar hasil yang
melebihi 100%, mencerminkan situasi bahawa pelabur memerlukan pampasan yang
lebih tinggi bagi aktiviti meminjamkan dana untuk tempoh yang lebih lama
apabila situasi pasaran kewangan adalah tidak menentu.
Kata kunci: Bon
sifar kupon; kadar keamatan mungkir; kadar pendek; model resapan-lompat
bivariat; risiko kredit
REFERENCES
Black, F. & Cox, J.C. 1976. Valuing corporate
securities: Some effects of bond indenture provisions. Journal of Finance 31(2): 351-367.
Brigo, D. & Chourdakis, K. 2009. Counterparty risk
for credit default swap-Impact of spread volatility and default correlation. International
Journal of Theoretical and Applied Finance 12(7): 1007-1026.
Cox, J.C., Ingersoll, J.E. & Ross, S.A. 1985. A
theory of the term structure of interest rates. Econometrica 53(2):
385-408.
Donelly, C. & Embrechts, P. 2010. The devil is in
the tails: Actuarial mathematics and the subprime mortgage crisis. ASTIN
Bulletin 40(1): 1-33.
Duffie, D. & Singleton, K. 1999. Modelling
term structures of defaultable bonds. The Review of Financial Studies 12(4): 687-720.
Giesecke, K. 2004. Correlated default within complete
information. Journal of Banking and Finance 28: 1521-1545.
Herbertsson, A., Jang, J. & Schmidt, T. 2011.
Pricing basket default swaps in a tractable shot noise model. Statistics
& Probability Letters 81(8): 1196-1207.
Hull, J. & White, A. 1995. The impact of default
risk on the prices of options and other derivative securities. Journal of
Banking & Finance 19(2): 299-322.
Hyong-Chol, O. & Ning, W. 2005. Analytical pricing of defaultable bond with
stochastic default intensity-The case
with exogenous default recovery. Working
Paper, Department of Applied Mathematics, Tong-ji University, Shanghai.
Ignatieva, K. & Platen, E. 2010. Modelling
co-movements and tail dependency in the international stock market via copulae. Asia-Pacific Financial
Market 7(3): 261-304.
Jang, J. 2007. Jump-diffusion process and their
applications in insurance and finance, Insurance: Mathematics and Economics 41(1): 62-70.
Jang, J. & Mohd Ramli, S.N. 2018. Hierarchical
Markov model in life insurance and social benefit schemes. Risks 6(3): 63. DOI: 10.3390/risks6030063.
Jarrow, R.A. & Protter, P. 2004. Structural versus
reduced form models: A new information based perspective. Journal of
Investment Management 2(2): 110.
Jarrow, R.A. & Yu, F. 2001. Counterparty risk and
the pricing of defaultable securities. Journal of Finance 56(5):
1765-1800.
Jarrow, R. & Turnbull, S. 1995. Pricing
derivatives on financial securities subject to credit risk. Journal of
Finance 50(1): 53-85.
Jarrow, R., Lando, D. & Turnbull, S.M. 1997. A
Markov Model for the term structure of credit risk spreads. The Review of
Financial Studies 10(2): 481-523.
Jouanin, J.F., Rapuch, G., Riboulet, G. &
Roncalli, T. 2001. Modelling dependence for credit derivatives with copulas. Working
Paper, Groupe de Recherche Opérationnelle, Crédit Lyonnais, France. http://dx.doi.org/10.2139/ssrn.1032561.
Kijima, M. 2000. Valuation of a credit swap of the
basket type. Review of Derivatives Research 4(1): 81-97.
Lando, D. 1998. On cox processes and credit risky
securities. Review of Derivatives Research 2(2): 99-120.
Li, D.X. 2000. On default correlation: A copula
function approach. Journal of Fixed Income 9(4): 43-54.
Longstaff, S. & Schwartz, E. 1995. A simple
approach to valuing risky fixed and floating rate debt. Journal of Finance 50(3): 789-821.
Lund, S., Manyika, J., Mehta, A. & Goldshtein, D.
2018. A decade after the global financial crisis: What has (and hasn’t)
changed? McKinsey Global Institute (Unpublished).
Ma, Y.K. & Kim, J.H. 2010. Pricing the credit
default swap rate for jump-diffusion default intensity processes. Quantitative
Finance 10(8): 809-818.
Merton, R. 1974. On the pricing of corporate debt: The
risk structure of interest rates. Journal of Finance 29(2): 449-470.
Mohd Ramli, S.N. & Jang, J. 2015. A multivariate
jump-diffusion process for counterparty risk in CDS rates. Journal of the
Korean Society for Industrial and Applied Mathematics 19: 2345.
Mohd Ramli, S.N. & Jang, J. 2014. Neumann series
on the recursive moments of copula-dependent aggregate discounted claims. Risks 2(2): 195-210.
Nelsen, R.B. 2006. An Introduction to Copula.
New York: Springer
Ruf, J. & Scherer, M. 2011. Pricing corporate
bonds in an arbitrary jump-diffusion model based on an improved Brownian-bridge
algorithm. Journal of Computational Finance 14(3): 127-144.
Salmon, F. 2009. Recipe for disaster: The formula that
killed Wall Street. Wired Magazine. February 23, 2009.
Schmidt, T. 2006. Coping with Copula. In Copulas:
From Theory to Application in Finance. London: Risk Books. pp.1-23.
Schonbucher, P.J. & Schubert, D. 2001.
Copula-dependent default risk in intensity models. Working Paper, Department
of Statistics, Bonn University.
Shamiri, A., Hamzah, N. & Pirmoradian, A. 2011.
Tail dependence estimate in financial market risk management: Clayton-Gumbel
copula approach. Sains Malaysiana 40(8): 927-935.
Stewart, I. 2012. The mathematical equation that
caused the banks to crash. The Guardian. February 12, 2012.
*Corresponding author; email: rafidah@ukm.edu.my
|