Sains
Malaysiana 49(4)(2020): 953-962
http://dx.doi.org/10.17576/jsm-2020-4904-24
Using Hybrid of
Block-Pulse Functions and Bernoulli Polynomials to Solve Fractional Fredholm-Volterra Integro-Differential
Equations
(Menggunakan Fungsi Blok-Denyut Hibrid dan Polinomial Bernoulli untuk Menyelesaikan Persamaan Pembezaan-Integro Fredholm-Volterra Pecahan)
ABBAS
SAADATMANDI* & SAMIYE AKHLAGHI
Department of Applied Mathematics, Faculty of Mathematical Sciences, University
of Kashan, Kashan 87317-53153, Iran
Received:
31 May 2019/Accepted: 5 January 2020
ABSTRACT
Fractional integro-differential
equations have been the subject of significant interest in science and
engineering problems. This paper deals with the numerical solution of classes
of fractional Fredholm-Volterra integro-differential
equations. The fractional derivative is described in the Caputo sense. We
consider a hybrid of block-pulse functions and Bernoulli polynomials to approximate
functions. The fractional integral operator for these hybrid functions together
with the Legendre-Gauss quadrature is used to reduce the computation of the
solution of the problem to a system of algebraic equations. Several examples
are given to show the validity and applicability of the proposed computational
procedure.
Keywords: Bernoulli polynomials;
Block-pulse functions; fractional integro-differential
equations; hybrid functions; Caputo derivative
ABSTRAK
Persamaan pembezaan integro pecahan telah menjadi subjek penting dalam masalah sains dan kejuruteraan. Makalah ini berkaitan dengan penyelesaian berangka kelas persamaan pembezaan integro Fredholm-Volterra pecahan. Terbitan pecahan diterangkan dalam maksud Caputo. Fungsi hibrid blok-denyutan dan polinomial Bernoulli dipertimbangkan untuk penghampiran fungsi. Pengoperasi kamiran pecahan untuk fungsi hibrid bersama-sama dengan kuadratur Legendre-Gauss digunakan untuk mengurangkan pengiraan penyelesaian masalah kepada sistem persamaan algebra. Beberapa contoh diberikan untuk menunjukkan kesahihan dan kebolehgunaan prosedur pengiraan yang dicadangkan.
Kata kunci: Fungsi blok-denyutan; fungsi hibrid; persamaan pembezaan integro pecahan; polinomial Bernoulli; terbitan Caputo
REFERENCES
Abdullah, F.A. 2013. Simulations of Hirschsprung's disease using fractional differential equation.
Sains Malaysiana
42(5): 661-666.
Abuasad, S.
& Hashim, I. 2018. Homotopy decomposition method for solving higher-order time-fractional diffusion
equation via modified beta derivative. Sains Malaysiana 47(11):
2899-2905.
Arikoglu, A.
& Ozkol, I. 2009. Solution of fractional integro-differential equations by using fractional
differential transform method. Chaos, Solitons and Fractals 40: 521-529.
Bayram, M., Hatipoglu, V.F., Alkan, S. & Das, S.E. 2018. A solution method for integro-differential equations of conformable
fractional derivative. Thermal Science 22: S7-S14.
Canuto, C., Hussaini, M.Y., Quarteroni, A.
& Zang, T.A. 1988. Spectral Methods in Fluid
Dynamic. Englewood Cliffs,
NJ: Prentice-Hall.
Costabile, F., Dellaccio, F. & Gualtieri,
M.I. 2006. A new approach to Bernoulli polynomials. Rendiconti di Matematica Serie VII 26: 1-12.
Dascioglu, A.
& Bayram, D.V. 2019. Solving fractional Fredholm integro-differential
equations by Laguerre polynomials. Sains Malaysiana 48(1):
251-257.
Ghazanfari, B., Ghazanfari, A.G. & Veisi, F.
2010. Homotopy perturbation method for the nonlinear
fractional Integro-differential equations. Australian
Journal of Basic and Applied Sciences 4: 5823-5829.
Haddadi,
N., Ordokhani, Y. & Razzaghi,
M. 2012. Optimal control of delay systems by using a hybrid functions
approximation. Journal of Optimization Theory and Applications 153: 338-356.
Huang,
L., Li, X.F., Zhao, Y. & Duan, X.Y. 2011.
Approximate solution of fractional integro-differential
equations by Taylor expansion method. Computers & Mathematics with
Applications 62: 1127-1134.
Keshavarz, E., Ordokhani, Y. & Razzaghi, M.
2019. Numerical solution of nonlinear mixed Fredholm-Volterra integro-differential equations of fractional order by
Bernoulli wavelets. Computational Methods for Differential Equations 7:
163-176.
Kilbas, A.A.,
Srivastava, H.M. & Trujillo, J.J. 2006. Theory and Applications of
Fractional Differential Equations. San Diego: Elsevier.
Kurulay, M.t.
& Secer, A. 2011. Variational iteration method for solving nonlinear fractional integro-differential
equations. International Journal of Computer Science and Emerging
Technologies 2: 18-20.
Mashayekhi, S., Razzaghi, M. & Wattanataweekul,
M. 2016. Analysis of multi-delay and piecewise constant delay systems by hybrid
functions approximation. Differential Equations and Dynamical Systems 24: 1-20.
Mashayekhi, S., Ordokhani, Y. & Razzaghi, M.
2012. Hybrid functions approach for nonlinear constrained optimal control
problems. Communications in Nonlinear Science and Numerical Simulation 17: 1831-1843.
Mashayekhi, S.
& Razzaghi, M. 2016. Numerical solution of the
fractional Bagley-Torvik equation by using hybrid
functions approximation. Mathematical Methods in the Applied Sciences 39: 353-365.
Mashayekhi, S.
& Razzaghi, M. 2015. Numerical solution of
nonlinear fractional integro-differential equations
by hybrid functions. Engineering Analysis with Boundary Elements 56:
81-89.
Meng, Z.,
Wang, L., Li, H. & Zhang, W. 2015. Legendre wavelets method for solving
fractional integro-differential equations. International
Journal of Computer Mathematics 92: 1275-1291.
Miller,
K.S. & Ross, B. 1993. An Introduction to the Fractional Calculus and
Fractional Differential Equations. New York: Wiley.
Mittal,
R.C. & Nigam, R. 2008. Solution of fractional integro-differential
equations by Adomian decomposition method. The
International Journal of Applied Mathematics and Mechanics 4: 87-94.
Momani,
S. & Noor, M.A. 2006. Numerical methods for fourth-order fractional integro-differential equations. Applied Mathematics and
Computation 182: 754-760.
Nemati, S.
& Lima, P.M. 2018. Numerical solution of nonlinear fractional integro-differential equations with weakly singular kernels
via a modification of hat functions. Applied Mathematics and Computation 327: 79-92.
Podlubny, I.
1999. Fractional Differential Equations. San Diego: Academic Press.
Rahimkhani, P., Ordokhani, Y. & Babolian, E.
2017. Fractional-order Bernoulli functions and their applications in solving
fractional Fredholem-Volterra integro-differential
equations. Applied Numerical Mathematics 122: 66-81.
Rawashdeh, E.A.
2006. Numerical solution of fractional integro-differential
equations by collocation method. Applied Mathematics and Computation 176: 1-6.
Saadatmandi, A.
& Dehghan, M. 2011a. A Legendre collocation
method for fractional integro-differential equations. Journal of Vibration and Control 17: 2050-2058.
Saadatmandi, A.
& Dehghan, M. 2011b. A tau approach for solution
of the space fractional diffusion equation. Computers and Mathematics with
Applications 62: 1135-1142.
Saadatmandi, A.,
Khani, A. & Azizi, M.R.
2018. A sinc-Gauss-Jacobi collocation
method for solving Volterra's population growth model with fractional order.
Tbilisi Mathematical Journal 11: 123-137.
Saeedi, H., Mohseni, M., Mollahasani, N.
& Chuev, G. 2011. A CAS wavelet method for
solving nonlinear Fredholm integro-differential
equations of fractional order. Communications in Nonlinear Science and
Numerical Simulation 16: 1151-1163.
Zhu, L.
& Fan, Q. 2012. Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet. Communications in Nonlinear Science
and Numerical Simulation 17: 2333-2341.
*Corresponding author; email:
saadatmandi@kashanu.ac.ir
|