Sains Malaysiana 49(4)(2020): 953-962

http://dx.doi.org/10.17576/jsm-2020-4904-24

 

Using Hybrid of Block-Pulse Functions and Bernoulli Polynomials to Solve Fractional Fredholm-Volterra Integro-Differential Equations

(Menggunakan Fungsi Blok-Denyut Hibrid dan Polinomial Bernoulli untuk Menyelesaikan Persamaan Pembezaan-Integro Fredholm-Volterra Pecahan)

 

ABBAS SAADATMANDI* & SAMIYE AKHLAGHI

 

Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan 87317-53153, Iran

 

Received: 31 May 2019/Accepted: 5 January 2020

 

ABSTRACT

Fractional integro-differential equations have been the subject of significant interest in science and engineering problems. This paper deals with the numerical solution of classes of fractional Fredholm-Volterra integro-differential equations. The fractional derivative is described in the Caputo sense. We consider a hybrid of block-pulse functions and Bernoulli polynomials to approximate functions. The fractional integral operator for these hybrid functions together with the Legendre-Gauss quadrature is used to reduce the computation of the solution of the problem to a system of algebraic equations. Several examples are given to show the validity and applicability of the proposed computational procedure.

 

Keywords: Bernoulli polynomials; Block-pulse functions; fractional integro-differential equations; hybrid functions; Caputo derivative

 

ABSTRAK

Persamaan pembezaan integro pecahan telah menjadi subjek penting dalam masalah sains dan kejuruteraan. Makalah ini berkaitan dengan penyelesaian berangka kelas persamaan pembezaan integro Fredholm-Volterra pecahan. Terbitan pecahan diterangkan dalam maksud Caputo. Fungsi hibrid blok-denyutan dan polinomial Bernoulli dipertimbangkan untuk penghampiran fungsi. Pengoperasi kamiran pecahan untuk fungsi hibrid bersama-sama dengan kuadratur Legendre-Gauss digunakan untuk mengurangkan pengiraan penyelesaian masalah kepada sistem persamaan algebra. Beberapa contoh diberikan untuk menunjukkan kesahihan dan kebolehgunaan prosedur pengiraan yang dicadangkan.

 

Kata kunci: Fungsi blok-denyutan; fungsi hibrid; persamaan pembezaan integro pecahan; polinomial Bernoulli; terbitan Caputo

 

REFERENCES

Abdullah, F.A. 2013. Simulations of Hirschsprung's disease using fractional differential equation. Sains Malaysiana 42(5): 661-666.

Abuasad, S. & Hashim, I. 2018. Homotopy decomposition method for solving higher-order time-fractional diffusion equation via modified beta derivative. Sains Malaysiana 47(11): 2899-2905.

Arikoglu, A. & Ozkol, I. 2009. Solution of fractional integro-differential equations by using fractional differential transform method. Chaos, Solitons and Fractals 40: 521-529.

Bayram, M., Hatipoglu, V.F., Alkan, S. & Das, S.E. 2018. A solution method for integro-differential equations of conformable fractional derivative. Thermal Science 22: S7-S14.

Canuto, C., Hussaini, M.Y., Quarteroni, A. & Zang, T.A. 1988. Spectral Methods in Fluid Dynamic. Englewood Cliffs, NJ: Prentice-Hall.

Costabile, F., Dellaccio, F. & Gualtieri, M.I. 2006. A new approach to Bernoulli polynomials. Rendiconti di Matematica Serie VII 26: 1-12.

Dascioglu, A. & Bayram, D.V. 2019. Solving fractional Fredholm integro-differential equations by Laguerre polynomials. Sains Malaysiana 48(1): 251-257.

Ghazanfari, B., Ghazanfari, A.G. & Veisi, F. 2010. Homotopy perturbation method for the nonlinear fractional Integro-differential equations. Australian Journal of Basic and Applied Sciences 4: 5823-5829.

Haddadi, N., Ordokhani, Y. & Razzaghi, M. 2012. Optimal control of delay systems by using a hybrid functions approximation. Journal of Optimization Theory and Applications 153:  338-356.

Huang, L., Li, X.F., Zhao, Y. & Duan, X.Y. 2011. Approximate solution of fractional integro-differential equations by Taylor expansion method. Computers & Mathematics with Applications 62: 1127-1134.

Keshavarz, E., Ordokhani, Y. & Razzaghi, M. 2019. Numerical solution of nonlinear mixed Fredholm-Volterra integro-differential equations of fractional order by Bernoulli wavelets. Computational Methods for Differential Equations 7: 163-176.

Kilbas, A.A., Srivastava, H.M. & Trujillo, J.J. 2006. Theory and Applications of Fractional Differential Equations. San Diego: Elsevier.

Kurulay, M.t. & Secer, A. 2011. Variational iteration method for solving nonlinear fractional integro-differential equations. International Journal of Computer Science and Emerging Technologies 2: 18-20.

Mashayekhi, S., Razzaghi, M. & Wattanataweekul, M. 2016. Analysis of multi-delay and piecewise constant delay systems by hybrid functions approximation. Differential Equations and Dynamical Systems 24: 1-20.

Mashayekhi, S., Ordokhani, Y. & Razzaghi, M. 2012. Hybrid functions approach for nonlinear constrained optimal control problems. Communications in Nonlinear Science and Numerical Simulation 17: 1831-1843.

Mashayekhi, S. & Razzaghi, M. 2016. Numerical solution of the fractional Bagley-Torvik equation by using hybrid functions approximation. Mathematical Methods in the Applied Sciences 39: 353-365.

Mashayekhi, S. & Razzaghi, M. 2015. Numerical solution of nonlinear fractional integro-differential equations by hybrid functions. Engineering Analysis with Boundary Elements  56: 81-89.

Meng, Z., Wang, L., Li, H. & Zhang, W. 2015. Legendre wavelets method for solving fractional integro-differential equations. International Journal of Computer Mathematics 92: 1275-1291.

Miller, K.S. & Ross, B. 1993. An Introduction to the Fractional Calculus and Fractional Differential Equations. New York: Wiley.

Mittal, R.C. & Nigam, R. 2008. Solution of fractional integro-differential equations by Adomian decomposition method. The International Journal of Applied Mathematics and Mechanics 4: 87-94.

Momani, S. & Noor, M.A. 2006. Numerical methods for fourth-order fractional integro-differential equations. Applied Mathematics and Computation 182: 754-760.

Nemati, S. & Lima, P.M. 2018. Numerical solution of nonlinear fractional integro-differential equations with weakly singular kernels via a modification of hat functions. Applied Mathematics and Computation 327: 79-92.

Podlubny, I. 1999. Fractional Differential Equations. San Diego: Academic Press.

Rahimkhani, P., Ordokhani, Y. & Babolian, E. 2017. Fractional-order Bernoulli functions and their applications in solving fractional Fredholem-Volterra integro-differential equations. Applied Numerical Mathematics 122: 66-81.

Rawashdeh, E.A. 2006. Numerical solution of fractional integro-differential equations by collocation method. Applied Mathematics and Computation 176: 1-6.

Saadatmandi, A. & Dehghan, M. 2011a. A Legendre collocation method for fractional integro-differential equations. Journal of Vibration and Control 17: 2050-2058.

Saadatmandi, A. & Dehghan, M. 2011b. A tau approach for solution of the space fractional diffusion equation. Computers and Mathematics with Applications 62: 1135-1142.

Saadatmandi, A., Khani, A. & Azizi, M.R. 2018. A sinc-Gauss-Jacobi collocation method for solving Volterra's population growth model with fractional order. Tbilisi Mathematical Journal 11: 123-137.

Saeedi, H., Mohseni, M., Mollahasani, N. & Chuev, G. 2011. A CAS wavelet method for solving nonlinear Fredholm integro-differential equations of fractional order. Communications in Nonlinear Science and Numerical Simulation 16: 1151-1163.

Zhu, L. & Fan, Q. 2012. Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet. Communications in Nonlinear Science and Numerical Simulation 17: 2333-2341.

 

*Corresponding author; email: saadatmandi@kashanu.ac.ir

 

 

 

 

 

previous