Sains Malaysiana 49(5)(2020): 1015-1020
http://dx.doi.org/10.17576/jsm-2020-4905-06
Reliability of Pterygium Redness Grading
Software (PRGS) in Describing
Different Types of Primary Pterygia Based on Appearance
(Kebolehpercayaan Perisian Penggredan Kemerahan
Pterigium (PRGS) dalam Mengelaskan Pelbagai Jenis Pterigium
Berdasarkan Perawakan)
MOHD RADZI HILMI1, MOHD ZULFAEZAL CHE AZEMIN1, KHAIRIDZAN MOHD KAMAL2*, AZRIN ESMADY ARIFFIN3, MUHAMMAD AFZAM SHAH ABDUL RAHIM1 & MOHD
IZZUDDIN MOHD TAMRIN4
1Department of Optometry and Vision Science, Kulliyyah of Allied Health Sciences, International Islamic
University Malaysia (IIUM), 25200 Kuantan, Pahang Darul Makmur, Malaysia
2Department of Ophthalmology, Kulliyyah of Medicine, International Islamic University Malaysia
(IIUM), 25200 Kuantan, Pahang Darul Makmur, Malaysia
3Faculty of Optometry and Vision Science, SEGi University, 47810 Petaling Jaya, Selangor Darul Ehsan, Malaysia
4Department of Information Systems, Kulliyyah of Information and Communication
Technology, International Islamic University Malaysia (IIUM), 53100 Gombak, Selangor Darul Ehsan, Malaysia
Received: 27 March 2019/Accepted: 15 January
2020
ABSTRACT
The
aim of this study was to evaluate the reliability of Pterygium Redness Grading
Software (PRGS) in describing different types of primary pterygia. Ninety-three
participants with primary pterygia who visited an ophthalmology clinic were
recruited in this study. PRGS is a semi-automated computer program used to
measure fibrovascular pterygium redness by analysing digital images of the
pterygium and grading it on a continuous scale of 1 (minimum redness) to 3
(maximum redness). An ocular surface expert graded all 93 images in random
order. The reliability of PRGS was determined by comparing pterygium redness
measured using the software and by the expert. The mean and standard deviation
of redness of the pterygium fibrovascular images measured using PRGS and by the
expert were 1.81 ± 0.58 and 1.73 ± 0.61, respectively (P = 0.396). A
comparative analysis based on pterygium type showed an increase in redness
according to pterygium type (Type I: 1.43 ± 0.32; Type II: 1.67 ± 0.55; and
Type III: 2.31 ± 0.46), without significant differences compared to redness
measured by the expert (Type I: 1.38 ± 0.34; Type II: 1.78 ± 0.62; and Type
III: 2.02 ± 0.66) (all P > 0.05). PRGS could describe and classify pterygia
according to their redness, and PRGS-based classification was in agreement with
the established classification of pterygia. Therefore, PRGS can be used in
addition to the existing pterygium grading system.
Keywords:
Automate; morphology; pterygium; redness; translucence
ABSTRAK
Matlamat kajian ini adalah
untuk menilai kebolehpercayaan Perisian
Penggredan Kemerahan Pterygium (PRGS) dalam mengelaskan
jenis-jenis pterigium primer.
Kajian ini berjaya merekrut 93 pesakit daripada klinik oftalmologi yang
menghidap pterigium primer.
PRGS merupakan program komputer semi-automatik yang berfungsi untuk mengukur
darjah kemerahan pterigium fibrovaskular
yang diperoleh daripada imej digital pterigium,
dalam bentuk pengredan berterusan (1 untuk kemerahan minimum dan 3 untuk
kemerahan maksimum). Kesemua 93 imej pterigium telah digredkan secara rambang oleh pakar permukaan okul. Kebolehpercayaan PRGS
telahpun ditentukan dengan membandingkannya dengan kemerahan yang dicerap oleh
pakar. Nilai min dan sisihan piawai untuk kemerahan pterigium fibrovaskular adalah 1.81 ± 0.58 (PRGS) dan 1.73 ±
0.61 (pakar), (P = 0.396). Analisis berasaskan jenis pterigium menunjukkan terdapat peningkatan kemerahan pterigium fibrovaskular apabila
diukur menggunakan PRGS (Jenis I: 1.43 ± 0.32; Jenis II: 1.67 ± 0.55; Jenis
III: 2.31 ± 0.46) berbanding pakar (Jenis I: 1.38 ± 0.34; Jenis II: 1.78 ±
0.62; Jenis III: 2.02 ± 0.66), tetapi perbezaan ini tidak signifikan untuk
semua jenis pterigium (P >
0.05). Skala pengredan PRGS dapat mengelaskan pterigium berdasarkan kemerahan dan ia selaras dengan
pengelasan pterigium sedia ada.
Skala kemerahan ini boleh digunakan sebagai tambahan kepada pengredan pterigium yang sedia ada.
Kata
kunci: Automatik; kemerahan; morfologi; pterigium; translusen
REFERENCES
Altan-Yaycioglu,
R., Kucukerdonmez, C., Karalezli, A., Corak, F. & Akova, Y.A. 2013.
Astigmatic changes following pterygium removal: Comparison of 5 different
methods. Indian J. Ophthalmol. 61: 104-108.
Amparo, F., Yin, J., Di Zazzo, A., Abud, T., Jurkunas, U.V.,
Hamrah, P. & Dana, R. 2017. Evaluating changes in ocular redness using a
novel automated method. Transl. Vis. Sci. Technol. 6(4): 13. doi: 10.1167/tvst.6.4.13.
Azemin,
M.Z.C., Hilmi, M.R. & Kamal, M.K. 2014. Supervised pterygium fibrovascular
redness grading using generalized regression neural network. In New Trends
in Software Methodologies, Tools and Techniques, edited by Fujita, H.
Amsterdam: IOS Press.
Bradley,
J.C., Yang, W., Bradley, R.H., Reid, T.W. & Schwab, I.R. 2010. The science of pterygia. Br. J. Ophthalmol. 94(7):
815-820.
Che
Azemin, M.Z., Mohd Tamrin, M.I., Hilmi, M.R. & Mohd Kamal, K. 2015. GLCM texture analysis on different color space for
pterygium grading. ARPN J. Eng. Appl. Sci. 10: 6410-6413.
Che
Azemin, M.Z., Hilmi, M.R., Mohd Tamrin, M.I. & Mohd Kamal, K. 2014. Fibrovascular redness grading using Gaussian process
regression with radial basis function kernel. In 2014 IEEE Conference Biomedical
Engineering and Sciences (IECBES). pp. 113-116.
Chui,
J., Coroneo, M.T., Tat, L.T., Crouch, R., Wakefield, D. & DiGirolamo, N. 2011. Ophthalmic pterygium: A stem cell
disorder with premalignant features. Am. J. Pathology 178(2): 817-827.
Chun, Y.S., Yoon, W.B., Kim, K.G. & Park, I.K. 2014.
Objective assessment of corneal staining using digital image analysis. Invest.
Ophthalmol. Vis. Sci. 55(12): 7896-7903.
Downie, L.E., Keller, P.R. & Vingrys, A.J. 2016. Assessing
ocular bulbar redness: A comparison of methods. Ophthalmic. Physiol. Opt. 36(2):
132-139.
Džunic,
B., Jovanović, P., Veselinović, D., Petrović, A.,
Stefanović, I. & Kovaćević, I. 2010. Analysis of pathohistological characteristics of
pterygium. Bosn. J. of Basic Med. Sci. 10(4): 307-313.
Efron,
N. 1998. Grading scales for contact lens complications. Ophthalmic. Physiol.
Opt. 18: 182-186.
Farhood,
Q.K. & Kareem, A.A. 2012. Pterygium and induced astigmatism. Kufa Med.
Journal 15(11): 341-345.
Fieguth,
P. & Simpson, T. 2002. Automated measurement of bulbar redness. Invest.
Ophthalmol. Vis. Sci. 43: 340-347.
Gumus,
K., Erkilic, K., Topaktas, D. & Colin, J. 2011. Effect of pterygia on refractive indices, corneal topography,
and ocular aberrations. Cornea 30(1): 24-29.
Hilmi,
M.R., Khairidzan, M.K., Azemin, M.Z.C., Azami, M.H. & Ariffin, A.E. 2019.
Corneopterygium total area measurements utilizing image analysis method. J. Optom. 12(4): 272-277.
Hilmi,
M.R., Khairidzan, M.K., Azemin, M.Z.C., Azami, M.H. & Ariffin, A.E. 2018.
Measurement of contrast sensitivity using the M&S Smart System II compared
with the standard Pelli–Robson Chart in patients with primary pterygium. Makara. J. Health Res. 22(3): 167-171.
Jiang, H., Zhong, J., DeBuc, D.C., Tao, A., Xu, Z., Lam, B.L,
Liua, C. & Wang, J. 2014. Functional slit lampbiomicroscopy for imaging
bulbar conjunctival microvasculature in contact lens wearers. Microvasc.
Res. 92: 62-71.
Kheirkhah,
A., Safi, H., Nazari, R., Kaghazkanani, R., Hashemi, H. & Behrouz, M.J. 2012a. Effects of pterygium surgery on front
and back corneal astigmatism. Int. Ophthalmol. 32: 251-257.
Kheirkhah,
A., Safi, H., Molaei, S., Nazari, R., Behrouz, M.J. & Raju, V.K. 2012b. Effects of pterygium surgery on front and
back corneal surfaces and anterior segment parameters. Can. J. Ophthalmol. 47(5):
423-428.
Manzar,
N. & Mahar, P.S. 2013. Pterygium recurrence related to its size and corneal
involvement. J. Coll. Physicians Surg. Pak. 23(2):
120-123.
Modenese, A. & Gobba, F. 2017. Occupational exposure to
solar radiation at different latitudes and pterygium: A systematic review of
the last 10 years of scientific literature. Int. J. Environ. Res. Public
Health. 15(1): E37. doi: 10.3390/ijerph15010037.
Mohd
Radzi, H., Khairidzan, M.K., Ariffin, A.E., Norazmar, N.A., Maruziki, N.N.,
Musa, N.H., Nasir, M.S., Azemin, M.Z.C., Azami, M.H. & Abdul Rahim, M.A.S.
2020. Effects of different types of primary pterygium on changes in oculovisual
function. Sains Malaysiana 49(2): 383-388.
Mohd
Radzi, H., Mohd Zulfaezal, C.A., Khairidzan, M.K., Mohd Izzuddin, M.T.,
Norfazrina, A.G. & Tengku Mohd, T.S.
2017. Prediction of changes in visual acuity and contrast sensitivity function
by tissue redness after pterygium surgery. Curr. Eye Res. 42:
852-856.
Mohammad-Salih,
P.A.K. & Sharif, A.F.M.D. 2008. Analysis of pterygium size and induced
corneal astigmatism. Cornea 27: 434-438.
Oellers,
P., Karp, C.L., Sheth, A., Kao, A.A., Abdelaziz, A., Matthews, J.L., Dubovy,
S.R. & Galor, A. 2013. Prevalence, treatment, and outcomes of coexistent
ocular surface squamous neoplasia and pterygium. Ophthalmology 120:
445-450.
Papas,
E.B. 2000. Key factors in the subjective and objective assessment of
conjunctival erythema. Invest. Ophthal. Vis. Sci. 41: 687-691.
Park, Y.M., Kim, C.D. & Lee, J.S.
2015. Effect of bevacizumab on human tenon’s fibroblasts cultured from primary
and recurrent pterygium. Korean J. Physiol.
Pharmacol. 19(4): 357-363.
Peterson,
R.C. & Wolffsohn, J.S. 2009. Objective grading of the anterior eye. Optom.
Vis. Sci. 86: 273-278.
Qin, Z., Fu, Q., Zhang, L., Yin, H., Jin, X., Tang, Q.,
Danni, L. & Yao, K. 2016. Proliferative effects of histamine on primary
human pterygium fibroblasts. Mediators Inflamm. 2016: 9862496.
Ribatti,
D., Nico, B., Perra, M.T., Maxia, C., Piras, F., Murtas, D., Crivellato, E.
& Sirigu, P. 2009. Correlation between NGF/TrkA and microvascular density
in human pterygium. Int. J. Exp. Pathology. 90(6): 615-620.
Ribatti,
D., Nico, B., Maxia, C., Longo, V., Murtas, D., Mangieri, D., Perra, M.T., De
Giorgis, M., Piras, F., Crivellato, E. & Sirigub, P. 2007.
Neovascularization and mast cells with tryptase activity increase
simultaneously in human pterygium. J. Cell. Molec. Med. 11(3): 585-589.
Romano, V., Steger, B., Brunner, M., Kaye, A., Zheng, Y.
& Willoughby, C.E. 2017. Detecting change in conjunctival hyperemia using a
pixel densitometry index. Ocul. Immunol. Inflamm. pp: 1-6.
Sánchez, B.M.L., Rodríguez, B.N., González, A.M., Evans, K. & Pena-Verdeal, H. 2016.
Defining the optimal region of interest for hyperemia grading in the bulbar
conjunctiva. Comput. Math. Methods Med. 2016: 3695014. doi:
10.1155/2016/3695014.
Schulze,
M.M., Hutchings, N. & Simpson, T.L. 2011. Grading bulbar redness using
cross calibrated clinical grading scales. Invest. Ophthalmol. Vis. Sci. 52:
5812-5817.
Schulze,
M.M., Hutchings, N. & Simpson, T.L. 2009. The perceived bulbar redness of
clinical grading scales. Optom. Vis. Sci. 84: 1250-1258.
Schulze,
M.M., Hutchings, N. & Simpson, T.L. 2008. The use of fractal analysis and
photometry to estimate the accuracy of bulbar redness grading scales. Optom.
Vis. Sci. 49: 1398-1406.
Schulze,
M.M., Jones, D.A. & Simpson, T.L. 2007. The development of validated bulbar
redness grading scales. Optom. Vis. Sci. 84: 976-983.
Sha, X., Wen, Y., Liu, Z., Song, L., Peng, J. & Xie, L. 2014. Inhibition of
α-smooth muscle actin expression and migration of pterygium fibroblasts by
coculture with amniotic mesenchymal stem cells. Curr. Eye Res. 39(11):
1081-1089.
Sumi, T., Yoneda, T., Fukuda, K., Hoshikawa, Y., Kobayashi,
M., Yanagi, M. Kiuchi, Y., Yasumitsu-Lovell, K. &
Fukushima, A. 2013. Development of automated conjunctival hyperemia analysis
software. Cornea 32:
52-59.
Tan,
D.T., Chee, S.P., Dear, K.B. & Lim, A.S. 1997. Effect of pterygium
morphology on pterygium recurrence in a controlled trial comparing conjunctival
autografting with bare sclera excision. Arch. Ophthalmol. 115:
1235-1240.
Touhami,
A., Di Pascuale, M.A., Kawatika, T., Del Valle, M., Rosa Jr., R.H., Duvony, S.
& Tseng, S.C.G. 2005. Characterisation of myofibroblasts in fibrovascular
tissues of primary and recurrent pterygia. Br. J. Ophthalmol. 89(3):
269-274.
Urbaniak,
G.C. & Plous, S. 2013. Research Randomizer (Version 4.0)[computer
software]. http://www.randomizer.org/. Accessed on June 19 2013.
Vives,
P.P., Castanheira, A.M.C.M., Mora, G.J., Margarit, S.L., Encina, D.M. &
Garcia, I.S. 2013. Topographic corneal changes in astigmatism due to pterygium’s
limbal-conjunctival autograft surgery. J. Emmetropia. 4: 13-18.
Wolffsohn, J.S. & Purslow, C. 2003. Clinical monitoring
of ocular physiology using digitalimage analysis. Cont. Lens Anterior Eye 26(1):
27-35.
Wolffsohn,
J.S. 2004. Incremental nature of anterior eye grading scales determined by
objective image analysis. Br. J. Ophthalmol. 88: 1434-1438.
Zhao, W.J., Duan, F., Li, Z.T., Yang, H.J., Huang, Q. & Wu, K.L. 2014. Evaluation of
regional bulbar redness using an image-based objective method. Int. J.
Ophthalmol. 7(1): 71-76.
*Corresponding
author; email: khairidzan@gmail.com
|