Sains Malaysiana 49(5)(2020): 1067-1080
http://dx.doi.org/10.17576/jsm-2020-4905-11
The Cartilaginous Tissue Formation using Sry (Sex
Determining Region Y)-BOX9 and Telomerase Reverse Transcriptase Genes Transfected
Chondrocytes: In vivo Approach
(Pembentukan Tisu Tulang Rawan menggunakanSry (Penentu Jantina RantauY)-BOX9 dan Telomerase Gen
Transkripsi Berbalik Kondrosit Transfeksi: Pendekatan in vivo)
NOORHIDAYAH MD NAZIR1, AHMAD HAFIZ ZULKIFLY2, KAMARUL ARIFFIN KHALID2, ISMAIL ZAINOL3, ZAITUNNATAKHIN ZAMLI1 & MUNIRAH SHA’BAN4*
1Department
of Biomedical Science, Kulliyyah of
Allied Health Sciences, International
Islamic University Malaysia (IIUM), Jalan Sultan
Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang Darul Makmur, Malaysia
2Department
of Orthopaedics, Traumatology
and Rehabilitation, Kulliyyah of
Medicine, International Islamic University Malaysia
(IIUM), Jalan Hospital Campus, 25100 Kuantan,
Pahang Darul Makmur, Malaysia
3Department
of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris (UPSI), 35900 Tanjong Malim, Perak Darul Ridzuan, Malaysia
4Department
of Physical Rehabilitation Sciences, Kulliyyah of
Allied Health Sciences,
International
Islamic University Malaysia (IIUM), Jalan Sultan
Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang Darul Makmur, Malaysia
Received:
29 July 2019/Accepted: 29 January 2020
ABSTRACT
The shortage of organ supply
reduces the success rate of organ transplantation. Hence, tissue regeneration has been initiated with the intention of improving the
available treatment modalities. Articular cartilage is a suitable tissue for
this purpose due to its limited self-heal ability. This study aims to evaluate
the cartilaginous properties of in vivo constructs formed using chondrocytes transfected with the combination of sry (sex determining region y)-box9 (SOX9) and
telomerase reverse transcriptase (TERT) genes (SOX9/TERT-transfected
chondrocytes) seeded on a three-dimensional (3D) poly(lactic-co-glycolic)
acid (PLGA)-based scaffold. The
rabbit’s articular chondrocytes (n=6) were transfected with SOX9 and TERT genes
via lipofection. The non-transfected chondrocyte
(NTC) was used as a control. A total
of 1×105 cells were seeded on a PLGA and
PLGA/fibrin hybrid scaffolds to form constructs. The resulted constructs were SOX9/TERT-PLGA/fibrin, NTC-PLGA/fibrin, SOX9/TERT-PLGA and, NTC-PLGA. All constructs were cultured for three weeks prior to subcutaneous
implantation into the athymic mice for two and four
weeks. The constructs’ structural and functional aspects were evaluated using
macroscopic observation, compression-stress analysis, histology, quantitative
sulphated glycosaminoglycan (sGAG) assay and cartilage-specific genes (ACAN, COL2A1, SOX9), TERT, and MMP13 expression analysis. The constructs demonstrated a cartilage-like appearance. The constructs’
rigidity corresponded to the homogenous cells and extracellular matrix
distribution in the week-4 constructs. Correspondingly, the cartilaginous matrix
components were visualised at the pericellular matrix
region of the construct, supported by the increment of quantitative sGAG content. The SOX9/TERT-PLGA/fibrin
exhibited better genes expression and cartilaginous phenotypes than the other
construct groups. The SOX9/TERT-PLGA/fibrin construct
facilitated cartilaginous tissue formation.
Keywords: Cartilage; chondrocytes; in vivo; SOX9; TERT; transfection
ABSTRAK
Kekurangan bekalan organ menurunkan kadar kejayaan pemindahan organ. Oleh itu, penjanaan semula tisu telah diusahakan bagi memperbaiki modaliti rawatan sedia ada. Rawan artikul ialah tisu yang sesuai untuk kegunaan ini oleh sebab kebolehan swapulihnya yang terbatas. Kajian ini bertujuan untuk menilai ciri-ciri tulang rawan binaan in vivo yang dibentuk melalui transfeksi gabungan gen sry (penentu jantina rantau y)-box9 (SOX9) dan gen
telomerase transkriptase membalik (TERT) ke dalam sel kondrosit yang disemai atas kerangka tiga dimensi (3D) berasaskan asidpoli(laktik-ko-glikolik) (PLGA). Sel kondrosit artikul arnab (n=6) telah ditransfeksi dengan gen SOX9 dan TERT melalui kaedah lipofeksi. Sel kondrosit tanpa transfeksi (NTC) telah digunakan sebagai kawalan. Sejumlah 1×105 sel telah disemai atas kerangka PLGA 3D dan kerangka hibrid PLGA/fibrin untuk membentuk binaan. binaan yang terhasil ialahSOX9/TERT-PLGA/fibrin, NTC-PLGA/fibrin, SOX9/TERT-PLGA dan NTC-PLGA. Semua binaan telah dikultur selama tiga minggu sebelum diimplantasi secara subkutaneus ke dalam tikus tanpa timus selama dua dan empat minggu. Aspek struktur dan fungsian binaan telah dinilai menggunakan pemerhatian makroskopik, analisis tegasan mampatan, histologi, asai kuantitatif glikosaminoglikan sulfat(sGAG) dananalisis ekspresi gen khusus tulang rawan (ACAN, COL2A1, SOX9), TERT danMMP13. Binaan menunjukkan rupa tulang rawan. Ketegaran binaan sejajar dengan taburan sel homogen dan matriks ekstrasel pada binaan minggu ke-4. Komponen matriks tulang rawan telah dilihat pada binaan di bahagian matriks periselular, disokong oleh kenaikan kandungan kuantitatif sGAG. SOX9/TERT-PLGA/fibrin mempamerkan ekpresi gen dan fenotip tulang rawan yang lebih baik berbanding kumpulan binaan yang lain. Binaan SOX9/TERT-PLGA/fibrin memudahkan pembentukan tisu tulang rawan.
Kata kunci: In vivo; sel kondrosit; SOX9; TERT; transfeksi; tulang rawan
REFERENCES
Alsberg,
E., Anderson, K.W., Albeiruti, A., Rowley, J.A. & Mooney, D.J. 2002.
Engineering growing tissues. Proceedings of the National Academy of Sciences 99(19): 12025-12030.
Calabrese, G.,
Gulino, R., Giuffrida, R., Forte, S., Figallo, E., Fabbi, C., Salvatorelli, L.,
Memeo, L., Gulisano, M. & Parenti, R. 2017. In vivo evaluation of
biocompatibility and chondrogenic potential of a cell-free collagen-based
scaffold. Frontiers in Physiology 8: 984.
Choi Jiye &
Yong Jeong 2017. Elevated emotional contagion in a mouse model of Alzheimer’s
Disease is associated with increased synchronization in the insula and
amygdala. Scientific Reports 7: 1-9.
Deng, Y.H., Lei, G.H.,
Lin, Z.X., Yang, Y.H., Lin, H. & Tuan, R.S. 2019. Engineering hyaline cartilage from mesenchymal stem
cells with low hypertrophy potential via modulation of culture
conditions and Wnt/β-catenin pathway. Biomaterials 192: 569-578.
Elakkiya Venugopal, Narmadha Rajeswaran, K. Santosh
Sahanand, Amitava Bhattacharyya & Selvakumar Rajendran. 2019. In vitro evaluation of phytochemical loaded electrospun gelatin nanofibers for
application in bone and cartilage tissue engineering. Biomedical Materials 14(1): 015004.
Inada, M., Wang, Y.M., Byrne, M.H., Rahman, M.U., Miyaura, C., Lopez-Otin, C. & Krane, S.M. 2004.
Critical roles for collagenase-3 (Mmp13) in development of growth plate
cartilage and in endochondral ossification. Proceedings of the National
Academy of Sciences 101(49): 17192-17197.
Karlsson, M. &
Björnsson, S. 2001. Quantitation of proteoglycans
in biological fluids using Alcian Blue. In Methods in
Molecular Biology, edited
by Lozzo, R.V. Totowa, NJ: Prote. Humana Press Inc.
Kavand, H., Van
Lintel, H. & Renaud, P. 2019. Efficacy of pulsed electromagnetic fields and
electromagnetic fields tuned to the ion cyclotron resonance frequency of Ca2+
on chondrogenic differentiation. Journal of Tissue Engineering and
Regenerative Medicine 13(5): 799-811.
Kudva, A.K.,
Luyten, F.P. & Patterson, J. 2018. In vitro screening of molecularly
engineered polyethylene glycol hydrogels for cartilage tissue engineering using
periosteum-derived and ATDC5 cells. International Journal of Molecular
Sciences 19(11): 3341.
Joydip Kundu, Shim, J.H., Jang, J.N., Kim, S.W. & Cho, D.W. 2013.
An additive manufacturing-based PCL-Alginate- chondrocyte bioprinted scaffold for
cartilage tissue engineering. Journal of Tissue Engineering and Regenerative
Medicine 9(11): 1286-1297.
Lih, E., Kum, C.H., Park,
W.R., Chun, S.Y., Cho, Y.J.,
Joung, Y.K. & Park, K.S. 2018.
Modified magnesium hydroxide nanoparticles inhibit the inflammatory response to
biodegradable poly(lactide- co-glycolide) implants. ACS Nano. 12(7):
6917-6925.
Liu, Y., Tian, K., Hao, J.,
Yang, T., Geng, X.L. & Zhang, W.G. 2019. Biomimetic poly (glycerol
sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering. Journal
of Materials Science: Materials in Medicine 30(5): 53.
Mohd Yunus Mohd
Heikal, Shuid Ahmad Nazrun, Kien Hui Chua & Abd Ghafar Norzana. 2019. Stichopus chloronotus aqueous extract as a chondroprotective agent for human chondrocytes isolated
from osteoarthitis articular cartilage in vitro. Cytotechnology 71(2): 521-537.
Munirah Sha’ban, Ruszymah,
Hj Idrus, Samsudin Osman Cassim, Badrul, A.H.M.Y., Azmi Baharudin &
Aminuddin Saim. 2008a. Autologous
versus pooled human serum for articular chondrocyte growth. Journal of
Orthopaedic Surgery 16(2): 220-229.
Munirah Sha’ban, Soon Hee Kim., Ruszymah Hj Idrus
& Gilson Khang. 2008b. The
use of fibrin and poly(lactic-co-glycolic acid) hybrid scaffold for articular
cartilage tissue engineering: An in vivo analysis. European Cells and
Materials 15: 41-52.
Noorhidayah Md Nazir, Ahmad Hafiz Zulkifly, Kamarul Ariffin Khalid, Ismail Zainol, Zaitunnatakhin Zamli & Munirah Sha'ban. 2019. Matrix
production in chondrocytes transfected with sex determining region Y-Box 9 and
telomerase reverse transcriptase genes: An in vitro evaluation from
monolayer culture to three-dimensional culture. Tissue Engineering and
Regenerative Medicine 16(3): 285-299.
Ogura, T., Bryant,
T., Merkely, G. & Minas, T. 2019. Autologous chondrocyte implantation for
bipolar chondral lesions in the patellofemoral compartment: Clinical outcomes
at a mean 9 years’ follow-up. American Journal of Sports Medicine 47(4):
837-846.
Prosser, A.,
Scotchford, C., Roberts, G., Grant, D. & Sottile, V. 2019. Integrated multi-assay culture model
for stem cell chondrogenic differentiation. International Journal of
Molecular Sciences 20(4): 951.
Rozlin Abdul Rahman, Norhamiza Mohamad Sukri, Noorhidayah Md Nazir, Muhammad Aa'zamuddin Ahmad Radzi, Ahmad Hafiz Zulkifly, Aminudin Che Ahmad, Abdurezak
Abdulahi Hashi, Suzanah Abdul Rahman & Munirah Sha'ban. 2015. The
potential of 3-dimensional construct engineered from poly(lactic-co-glycolic
acid)/fibrin hybrid scaffold seeded with bone marrow mesenchymal stem cells for in vitro cartilage tissue engineering. Tissue and Cell 47(4):
420-430.
Sabatino, M.A.,
Santoro, R., Gueven, S., Jaquiery, C., Wendt, D.J., Martin, I., Moretti, M.
& Barbero, A. 2012. Cartilage graft engineering by co-culturing primary
human articular chondrocytes with human bone marrow stromal cells. Pediatric
Endocrinology Reviews 9(12): 1394-1403.
Sasano, Y.,
Furusawa, M.,
Ohtani, H., Mizoguchi, I.,
Takahashi, I. & Kagayama, M. 1996. Chondrocytes synthesize type I collagen and accumulate the protein in the
matrix during development of rat tibial articular cartilage. Anatomy and
Embryology 194(3): 247-252.
Schmitz, N.,
Laverty, S., Kraus, V.B. & Aigner, T. 2010. Basic methods in histopathology
of joint tissues. Osteoarthritis and Cartilage 18: 113-116.
Vermeulen, S.,
Vasilevich, A., Tsiapalis, D., Roumans, N., Vroemen, P., Beijer, N.R.M.,
Dede-Eren, A., Zeugolis, D. & de Boer, J. 2019. Identification of
topographical architectures supporting the phenotype of rat tenocytes. Acta
Biomaterialia 83: 277-290.
Wang, T.Y., Lai, J.H., Han, L-H.,
Tong, X.M. & Yang, F. 2016. Modulating stem cell-Chondrocyte
interactions for cartilage repair using combinatorial extracellular
matrix-containing hydrogels. Journal of Materials Chemistry B 4(47):
7641-7650.
Yamamoto, K., Okano, H., Miyagawa, W.,
Visse, R., Shitomi, Y.,
Santamaria, S., Dudhia, J., Troeberg, L., Strickland, D.K., Hirohata, S. & Nagase, H. 2016.
MMP-13 is constitutively produced in human chondrocytes and co-endocytosed with
ADAMTS-5 and TIMP-3 by the endocytic receptor LRP1. Matrix Biology 56:
57-73.
Zhang, X.D., Qi, L.,
Chen, Y.H., Xiong, Z.Z.,
Li, J.J., Xu, P.,
Pan, Z.Q., Zhang, H.Z.,
Chen, Z.X., Xue, K. & Liu, K. 2019. The in vivo chondrogenesis of cartilage stem/progenitor cells from
auricular cartilage and the perichondrium. American Journal of Translational
Research 11(5): 2855-2865.
Zhang, X.W., Wu, S.L., Naccarato, T., Prakash-Damani, M., Chou, Y.,
Chu, C-Q. & Zhu, Y. 2017. Regeneration of hyaline-like
cartilage in situ with SOX9 stimulation of bone marrow-derived
mesenchymal stem cells. PLoS ONE 12(6): e0180138.
Zhu, Y.Q., Zhang, Y.Y.,
Yu, L., Tao, R., Xia, H.T., Zheng, R., Shi, Y.,
Tang, S.J., W.J.,
Zhang., Liu, W., Cao, Y.L. & Zhou, G.D. 2014. Influence of Chm-I knockout
on ectopic cartilage regeneration and homeostasis maintenance. Tissue
Engineering Part A 21(3-4): 782-792.
*Corresponding
author; email: munirahshaban@iium.edu.my
|