Sains Malaysiana 49(5)(2020): 1107-1114
http://dx.doi.org/10.17576/jsm-2020-4905-15
Gallic Acid and Methyl Gallate Enhance Antiproliferative Effect of Cisplatin on
Cervical Cancer (HeLa) Cells
(Asid Galik dan Metil Galat Mempertingkat Kesan Antiproliferatif Cisplatin ke atas Sel Kanser Serviks (HeLa))
NORLIDA MAMAT1, 2*, HASMAH
ABDULLAH2, HERMIZI HAPIDIN2 & NOOR
FATMAWATI MOKHTAR3
1Faculty of Health
Sciences, Gong Badak Campus, Universiti Sultan Zainal Abidin, 21300 Kuala Nerus,
Terengganu Darul Iman, Malaysia
2School of Health
Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Darul Naim, Malaysia
3Institute for Research
in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Darul Naim, Malaysia
Received:
23 April 2019/Accepted: 15 January 2020
ABSTRACT
Cervical cancer is the
fourth most common cancer-related death affecting women. The drug resistance,
toxicities and undesired side effects become the major limitation in
cisplatin-based chemotherapy. Gallic acid and methyl gallate are the most abundance phenolic compounds that are widely distributed in
plants. This study was conducted to evaluate the antioxidant and antiproliferative activity of gallic acid and methyl gallate and their synergistic effects
in combination with cisplatin towards cervical cancer (HeLa) cells. The
antioxidant activity of gallic acid and methyl gallate was measured by using 1,
1-diphenyl-2-picrylhydrazyl radical (DPPH) scavenging assay. Antiproliferative activity of gallic acid, methyl gallate and cisplatin on HeLa and NIH/
3T3 cells was determined using MTT assay. The effect of gallic acid and methyl gallate combined with cisplatin were
then determined by CompuSyn software. Gallic acid and
methyl gallate showed strong antioxidant activity
with EC50 value of 18.23 µM and 19.39 µM, respectively. The IC50 of gallic acid, methyl gallate and cisplatin on HeLa cells were 13.44 µg/mL, 16.55 µg/mL, and 8.04 µg/mL
whereas in NIH/3T3 cells were 32.90 µg/mL, 35.70 µg/mL, and 6.57 µg/mL. Cisplatin combined with fixed concentration of gallic acid and methyl gallate could inhibit the proliferation of HeLa cells greater than cisplatin alone.
Interestingly, gallic acid and methyl gallate in combination with cisplatin at the concentration
of 0.51-4.02 µg/mL have shown synergistic effects. Therefore, our study
suggested that gallic acid and methyl gallate in combination with cisplatin have the potential to
be developed as chemotherapeutic agents for cervical cancer.
Keywords: Antioxidant
activity; antiproliferative activity; gallic acid; methyl gallate;
synergistic effect
ABSTRAK
Kanser serviks merupakan kanser keempat yang paling kerap dihidapi dalam kalangan wanita. Faktor kerintangan, kesan toksik dan kesan sampingan yang tidak diingini mengehadkan penggunaan cisplatin dalam rawatan kanser. Asid galik dan metil galat merupakan fenolik yang paling banyak ditemui dalam tumbuhan. Kajian ini dijalankan untuk menilai aktiviti antioksidan dan akiviti antiproliferatif asid galik dan metil galat dan kesan sinergi kombinasinya dengan cisplatin ke atas sel kanser serviks (HeLa). Aktiviti antioksidan asid galik dan metil galat ditentukan dengan asai hapus-sisa radikal bebas DPPH. Manakala aktiviti antiproliferatif ke atas sel HeLa dan NIH/3T3 ditentukan melalui asai MTT. Kesan kombinasi antara asid galik dan metil galat dengan cisplatin ditentukan dengan perisian CompuSyn. Asid galik dan metil galat menunjukkan aktiviti antioksidan yang kuat dengan nilai EC50 masing-masing adalah 18.23 µM dan 19.39 µM. IC50, bagi asid galik, metil galat dan cisplatin ke atas sel HeLa pula adalah 13.44 µg/mL, 16.55 µg/mL dan 8.04 µg/mL manakala pada sel NIH/ 3T3 adalah 32.90 µg/mL,
35.70 µg/mL dan 6.57 µg/mL. Kombinasi antara cisplatin dan asid galik serta metil galat pada kepekatan tertentu berupaya merencat pertumbuhan sel HeLa dengan lebih cekap berbanding dengan rawatan cisplatin sahaja. Kombinasi asid galik dan metil galat dengan cisplatin pada kepekatan 0.51-4.02 µg/mL juga telah menunjukkan kesan sinergi. Oleh itu, kombinasi asid galik dan metil galat dengan cisplatin berpotensi untuk dibangunkan sebagai agen rawatan kemoterapi untuk kanser serviks.
Kata kunci: Aktiviti antioksidan; aktiviti antiproliferatif; asid galik; kesan sinergi; metil galat
REFERENCES
Alma,
M.H., Mavi, A., Yildirim,
A., Digrak, M. & Hirata, T. 2003. Screening
chemical composition and in vitro antioxidant and antimicrobial
activities of the essential oils from Origanum syriacum L. growing in Turkey. Biological and Pharmaceutical Bulletin 26(12): 1725-1729.
Arbyn, M., Castellsague, X., de Sanjose, S., Bruni, M., Saraiya, L.,
Bray, F. & Ferlay, J. 2011. Worldwide burden of
cervical cancer in 2008. Annals of Oncology 22: 2675-2686.
Asnaashari, M., Farhoosh,
R. & Sharif, A. 2014. Antioxidant activity of gallic acid and methyl gallate in triacylglycerols of Kilka fish oil and its oil-in-water emulsion. Food
Chemistry 159: 439-444.
Asci,
H., Ozmen, O., Ellidag,
Y.H., Aydin, B., Bas, E. & Yilmat, N. 2017. The
impact of gallic acid on the methotrexate-induced
kidney damage in rats. Journal of Food and Drug Analysis 25: 890-897.
Conklin, K.A. 2000. Dietary antioxidants during cancer
chemotherapy: Impact on chemotherapeutic effectiveness and development of side
effects. Nutr. Cancer 37(1): 1-18.
Chanwitheesuk, A., Teerawutgulrag, A., Kilburn, J.D. & Rakariyatham,
N. 2007. Antimicrobial gallic acid from Caesalpinia mimosoides Lamk. Food Chemistry 100: 1044-1048.
Dasari, S. & Bernard, P.
2014. Cisplatin in cancer therapy: Molecular mechanisms of action. European
Journal of Pharmacology 740:
364-378.
Farhoosh, R. & Nyström, L. 2018. Antioxidant potency of gallic acid, methyl gallate and
their combinations in sun flower oil triacylglycerols at high temperature. Food Chemistry 244: 29-35.
Ferlay, J., Soerjomataram, I., Ervik, M., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D.M., Forman, D. & Bray, F. 2013. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality
Worldwide: IARC CancerBase No. 11 [Internet]. Lyon: International Agency for Research on
Cancer. World Health Organization.
Gordon, C., Carmichael, J.C. & Tewari,
K.S. 2018. Gynecologic Oncology Reports Oncofertility in the setting of advanced cervical cancer - A case report. Gynecologic
Oncology Reports 24: 27-29.
Heidarian, E., Keloushadi, M., Ghatreh-samani,
K. & Jafari-dehkordi, E. 2017. Gallic acid
inhibits invasion and reduces IL-6 gene expression, pSTAT3, pERK1/2, and pAKT cellular signaling proteins in human prostate cancer
DU-145 cells. International Journal of
Cancer Management 10(11):
Higuchi, K. & Yanagawa,
T. 2019. Evaluating dose of cisplatin responsible for causing nephrotoxicity. PLoS ONE 14(4): e0215757.
Jeon, M., Rahman, N. & Kim, Y. 2016. Wnt/β-catenin signaling plays a distinct role in
methyl gallate-mediated inhibition of adipogenesis. Biochemical and Biophysical Research
Communications 479: 22-27.
Kalita, D., Kar, R. & Handique, J.G.
2012. A theoretical study on the antioxidant property of gallic acid and its derivatives. Journal of Theoretical and Computational Chemistry 11(2): 391-402.
Kamatham, S., Kumar, N. & Gudipalli, P. 2015. Isolation and characterization of gallic acid and methyl gallate from the seed coats of Givotia rottleriformis Griff. and their anti-proliferative effect on human
epidermoid carcinoma A431 cells. Toxicology
Reports 2: 520-529.
Karamac, M., Kosinska,
A. & Pegg, R.B. 2005. Comparison of
radical-scavenging activities for selected phenolic acids. Polish Journal of Food and Nutrition Science 14(2): 165-170.
Karpe, A., Patil, V.M., Joshi,
A., Noronha, V., Gupta, S., Ramaswamy, A., Sahu, A., Doshi, V., Gupta, T., Rath, S., Banavali, S. & Prabhash, K. 2016. Weekly cisplatin (30-40 mg/m2) as radiosensitizer: Is it high or moderate emetic agent? Indian
Journal of Cancer 53(3): 454-456.
Kawada,
M., Ohno, Y., Ri, Y., Ikoma, T., Yuugetu, H., Asai, T., Watanabe, M., Yasuda, N., Akao,
S., Takemura, G., Minatoguchi,
S., Gotoh, K., Fujiwara, H. & Fukuda, K. 2001.
Anti-tumor effect of gallic acid on LL-2 lung cancer
cells transplanted in mice. Anti-Cancer
Drugs 12(10): 847-852.
Kikuzaki, H., Hisamoto,
M., Hirose, K., Akiyama, K. & Taniguchi, H. 2002. Antioxidant properties of ferulic acid and its related compounds. Journal of
Agricultural and Food Chemistry 50:
2161-2168.
Kim,
H., Lee, G., Sohn, S., Lee, C., Kwak,
J.W. & Bae, H. 2016. Immunotherapy with methyl gallate,
an inhibitor of Treg cell migration, enhances the
anti-cancer effect of cisplatin therapy. Korean
Journal of Physiology and Pharmacology 20(3): 261-268.
Koraneekit, A., Limpaiboon,
T., Sangka, A., Boonsiri,
P., Daduang, S. & Daduang,
J. 2018. Synergistic effects of cisplatin-caffeic acid induces apoptosis in human cervical cancer cells via the mitochondrial
pathways. Oncology Letters 15:
7397-7402.
Lu,
Z., Nie, G., Belton, P.S., Tang, H. & Zhao, B.
2006. Structure-activity relationship analysis of antioxidant ability and
neuroprotective effect of gallic acid derivatives. Neurochemistry
International 48: 263-274.
Lu, Y., Jiang, F., Jiang, H., Wu, K., Zheng, X., Cai, Y., Katakowski, M., Chopp, M. & To, S.T. 2010. Gallic acid suppresses cell
viability, proliferation, invasion and angiogenesis in human glioma cells. European
Journal of Pharmacology 641:
102-107.
Malaysian National Cancer Registry Report 2007-2011.
2016. Ministry of Health, Malaysia.
Muhamad, N.A., Kamaluddin,
M.A., Adon, M.Y., Noh, M.A., Bakhtiar,
M.F., Tamim, N.S.I., Mahmud, S.H. & Aris, T. 2015. Survival rates of cervical cancer patients
in Malaysia. Asian Pacific Journal of Cancer Prevention 16(7): 3067-3072.
Nam, B., Rho, K.J., Shin, D. & Son, J. 2016.
Gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancers by
accelerating EGFR turnover. Bioorganic & Medicinal Chemistry Letters 26: 4571-4575.
Oboh, G., Ogunsuyi,
O.B., Ogunbadejo, M.D. & Adefegha,
S.A. 2016. Influence of gallic acid on α
-amylase and α -glucosidase inhibitory properties of acarbose. Journal of Food and Drug Analysis 24:
627-634.
Omar, W.A.W., Azhar, N.A., Fadzilah, N.H. & Nik Mohamed Kamal, N.N.S. 2016. Bee
pollen extract of Malaysian stingless bee enhances the effect of cisplatin on
breast cancer cell lines. Asian Pacific
Journal of Tropical Biomedicine 6(3): 265-269.
Park, W.H. 2017. Gallic acid induces HeLa cell death via increasing GSH depletion rather than ROS levels. Oncology Reports 37: 1277-1283.
Purena, R., Seth, R. &
Bhatt, R. 2018. Protective role of Emblica officinalis hydro-ethanolic leaf extract in cisplatin induced nephrotoxicity in rats. Toxicology Reports 5: 270-277.
Qin, S., Cheng, Y., Lei, Q., Zhang, A. & Zhang, X.
2018. Combinational strategy for high-performance cancer chemotherapy. Biomaterials 171: 178-197.
Selvi, S.K., Vinoth, A., Varadharaian, T., Weng, C.F. & Padma, V.V. 2017. Neferine augments therapeutic efficacy of cisplatin through ROS-mediated non-canonical
autophagy in human lung adenocarcinoma (A549 cells). Food and Chemical Toxicology 103: 28-40.
Sevgi, K., Tepe, B. & Sarikurkcu, C.
2015. Antioxidant and DNA damage protection potentials of selected phenolic
acids. Food and Chemical Toxicology 77: 12-21.
Sun, C., Zhang, Q., Zheng, G. & Feng, B. 2019.
Phytochemicals: Current strategy to sensitize cancer cells to cisplatin. Biomedicine
& Pharmacotherapy 110:
518-527.
Tuorkey, M.J. 2015. Cancer
therapy with phytochemicals: Present and future perspectives. Biomedical and
Environmental Sciences 28(11):
808-819.
Wang, R., Ma, L., Weng, D.,
Yao, J., Liu, X. & Jin, F. 2016. Gallic acid
induces apoptosis and enhances the anticancer effects of cisplatin in human
small cell lung cancer H446 cell line via the ROS-dependent mitochondrial
apoptotic pathway. Oncology Reports 35: 3075-3083.
You, B.R., Moon, H.J., Han, Y.H. & Park, W.H.
2010. Gallic acid inhibits the growth of HeLa cervical cancer cells via apoptosis and/or necrosis. Food and Chemical Toxicology 48: 1334-1340.
Zhao, B. & Hu, M. 2013. Gallic acid reduces cell
viability, proliferation, invasion and angiogenesis in human cervical cancer
cells. Oncology Letters 6:
1749-1755.
*Corresponding
author; email: norlida@unisza.edu.my
|