Sains Malaysiana 49(5)(2020): 1129-1136

http://dx.doi.org/10.17576/jsm-2020-4905-18

 

Photothermal Imaging using Non-Contact Photopyroelectric Method

(Pengimejan Fototerma menggunakan Kaedah Fotopiroelektrik Tidak Bersentuhan)

AZURA AMRAN, NOR KAMILAH SAAT*, NIZAM TAMCHEK & TING LEE MON

 

Photoacoustic Laboratory, Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia

 

Received: 24 September 2019/Accepted: 16 January 2020

 

ABSTRACT

Photothermal imaging is a non-destructive and contactless technique for testing and monitoring defect of materials. This work is demonstrated thermal images for film sample of Al, Cu, Ni, and Cu with artificial defect  with sampling area of 10 mm × 12 mm (21 × 25 pixels), 10 mm × 14 mm (21 × 29 pixels), 10 mm × 14 mm (21 × 29 pixels), 10 mm × 10 mm (21 × 21 pixels) respectively, acquired by raster scanning with the step size of 500 µm at fixed frequency modulation of 6 Hz and lock in detection in the range of 50 to 500 mV depending of studied material. The thermal image of defect sample is successfully acquired by introducing artificial defect onto the sample of Cu film. The thermal signal is obtained by taking transmission measurement which is defined by the ratio of intensity with sample to without sample. This paper also involves a photopyroelectric non-contact configuration for thermal diffusivity of the Al, Cu, and Ni film samples.  Normalization procedure was used to wipe out the amount of photopyroelectric cell media parameter that should usually known before the sample’s thermal diffusivity could be decided. In this case, sample Al, Cu, and Ni were nearly to literature values but therefore justified the suggested model, the thermal diffusivity acquired.

Keywords: Photopyroelectric; photothermal; thermal diffusivity

 

ABSTRAK

Pengimejan fototerma adalah teknik yang tidak merosakkan dan tidak bersentuhan untuk menguji dan memantau kecacatan bahan. Projek  ini menunjukkan imej terma untuk sampel filem Al, Cu, Ni dan Cu dengan kecacatan tiruan dengan luas sampingan 10 mm × 12 mm (21 × 25 piksel), 10 mm × 14 mm (21 × 29 piksel), 10 mm × 14 mm (21 × 29 piksel), 10 mm × 10 mm (21 × 21 piksel), yang diperoleh dengan pengimbasan raster dengan saiz langkah 500 μm pada modulasi frekuensi tetap 6 Hz dan pengesanan mengunci dalam julat 50 hingga 500 mV bergantung kepada bahan yang dikaji. Imej terma untuk sampel kecacatan berjaya diperoleh dengan memperkenalkan kecacatan tiruan untuk sampel filem Cu. Isyarat terma yang diperoleh dengan mengambil pengukuran penghantaran yang ditentukan oleh nisbah keamatan dengan sampel kepada tanpa sampel. Kertas ini juga melibatkan konfigurasi tidak bersentuhan fotopiroelektrik untuk peresapan haba dalam sampel Al, Cu dan Ni. Prosedur normalisasi digunakan untuk memadam jumlah parameter media sel fotopiroelektrik yang perlu diketahui sebelum peresapan haba sampel dapat diketahui. Dalam kes ini, peresapan haba untuk sampel Al, Cu dan Ni hampir sama dengan nilai kesusasteraasn menggunakan model yang dicadangkan.

Kata kunci: Fotopiroelektrik; fototerma; peresapan haba

 

REFERENCES

Almond, D.P. & Patel, P.M. 1996. Photothermal Science and Technique. London: Chapman & Hall.

Azmi, B.Z., Liaw, H.S., Yunus, W.M.M., Hashim, M., Moksin, M.M. & Yusoff, W.M.D.W. 2004. Normalisation procedure in thermal wave approach of thermal diffusivity measurement of solids using pyroelectric sensor. Infrared Phys. & Technol. 45: 315-321.

Bennett, C.A. & Patty, R.R. 1982. Thermal wave interferometry: A potential application of the photoacoustic effect. Appl. Optics 21: 49-54.

Delenclos, S., Chirtoc, M., Sahraoui, A.H., Kolinsky, C. & Buisine, J.M. 2001. A new calibration procedure for the determination of thermal parameters and their temperature dependence using the photopyroelectric method. Analytical Sciences 17: s161-s164.

Lide, R.D. 1997. Handbook of Chemisty and Physics. 78th edition. Boca Raton: CRC Press Inc.

Mandelis, A. 2011. Perspective: Photopyroelectric effects and pyroelectric measurements: Photopyroelectric calorimeter for the simultaneous thermal, optical, and structural characterization of samples over phase transitions. Review of Scientific Instruments 82(12901): 1-3.

Murphy, J.C. & Aamodt, L.C. 1980.  Photothermal spectroscopy using optical beam probing: Mirage effect. J. Appl. Phys. 51: 4580.

Parker, W.J., Jenkins, R.J., Butler, C.P. & Abbot, G.L. 1961. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32: 1979.

Sang, L.H. 2003. Photopyroelectric technique in thermal diffusivity determination and spectroscopic response of solid. Master Thesis, University Putra Malaysia (Unpublished).

Taylor, R.E. & Maglic, K.D. 1984. In Compendium of Thermophysical Property Measurement Methods, edited by Maglic, K.D., Cezairliyan, A. & Peletsky, V.E. 1st edition. New York: Plenum.

Wong, P., Fung, P. & Tam, H. 1998. Low thermal diffusivity measurements of thin films using mirage technique. J. Appl. Phys. 84: 6623.

Zakaria, A., Sang, L.H., Abbas, Z., Yunus, W.M.M. & Hassan, J. 2006. Measurement of thermal parameter using non-contact photopyroelectric method. ScienceAsia 32(1): 47-52.

 

*Corresponding author; email: kamilah@upm.edu.my

 

 

 

 

previous