Sains
Malaysiana 49(5)(2020): 1129-1136
http://dx.doi.org/10.17576/jsm-2020-4905-18
Photothermal Imaging using Non-Contact
Photopyroelectric Method
(Pengimejan Fototerma
menggunakan Kaedah Fotopiroelektrik Tidak Bersentuhan)
AZURA AMRAN, NOR KAMILAH SAAT*, NIZAM TAMCHEK & TING LEE MON
Photoacoustic Laboratory,
Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400
Serdang, Selangor Darul Ehsan, Malaysia
Received: 24
September 2019/Accepted: 16 January 2020
ABSTRACT
Photothermal imaging is a non-destructive and contactless
technique for testing and monitoring defect of materials. This work is
demonstrated thermal images for film sample of Al, Cu, Ni, and Cu with
artificial defect with sampling area of
10 mm × 12 mm (21 × 25 pixels), 10 mm × 14 mm (21 × 29 pixels), 10 mm × 14 mm
(21 × 29 pixels), 10 mm × 10 mm (21 × 21 pixels) respectively, acquired by
raster scanning with the step size of 500 µm at fixed frequency modulation of 6
Hz and lock in detection in the range of 50 to 500 mV depending of studied
material. The thermal image of defect sample is successfully acquired by
introducing artificial defect onto the sample of Cu film. The thermal signal is
obtained by taking transmission measurement which is defined by the ratio of intensity
with sample to without sample. This paper also involves a photopyroelectric
non-contact configuration for thermal diffusivity of the Al, Cu, and Ni film
samples. Normalization procedure was
used to wipe out the amount of photopyroelectric cell media parameter that
should usually known before the sample’s thermal diffusivity could be decided.
In this case, sample Al, Cu, and Ni were nearly to literature values but therefore justified the
suggested model, the thermal diffusivity acquired.
Keywords: Photopyroelectric; photothermal; thermal diffusivity
ABSTRAK
Pengimejan fototerma adalah teknik yang tidak
merosakkan dan tidak bersentuhan untuk menguji dan memantau kecacatan bahan.
Projek ini menunjukkan imej terma untuk
sampel filem Al, Cu, Ni dan Cu dengan kecacatan tiruan dengan luas sampingan 10
mm × 12 mm (21 × 25 piksel), 10 mm × 14 mm (21 × 29 piksel), 10 mm × 14 mm (21
× 29 piksel), 10 mm × 10 mm (21 × 21 piksel), yang diperoleh dengan pengimbasan
raster dengan saiz langkah 500 μm pada modulasi frekuensi tetap 6 Hz dan
pengesanan mengunci dalam julat 50 hingga 500 mV bergantung kepada bahan yang
dikaji. Imej terma untuk sampel kecacatan berjaya diperoleh dengan memperkenalkan kecacatan
tiruan untuk sampel filem Cu. Isyarat terma yang diperoleh dengan mengambil
pengukuran penghantaran yang ditentukan oleh nisbah keamatan dengan sampel
kepada tanpa sampel. Kertas ini juga melibatkan konfigurasi tidak bersentuhan
fotopiroelektrik untuk peresapan haba dalam
sampel Al, Cu dan Ni. Prosedur normalisasi digunakan untuk memadam jumlah
parameter media sel fotopiroelektrik
yang perlu diketahui sebelum peresapan haba sampel dapat diketahui. Dalam kes
ini, peresapan haba untuk sampel Al, Cu dan Ni hampir sama dengan nilai
kesusasteraasn menggunakan model yang dicadangkan.
Kata kunci: Fotopiroelektrik; fototerma; peresapan haba
REFERENCES
Almond, D.P. & Patel, P.M.
1996. Photothermal Science and Technique. London: Chapman & Hall.
Azmi, B.Z., Liaw, H.S., Yunus,
W.M.M., Hashim, M., Moksin, M.M. & Yusoff, W.M.D.W. 2004. Normalisation
procedure in thermal wave approach of thermal diffusivity measurement of solids
using pyroelectric sensor. Infrared Phys.
& Technol. 45: 315-321.
Bennett, C.A. & Patty, R.R.
1982. Thermal wave interferometry: A potential application of the photoacoustic
effect. Appl. Optics 21: 49-54.
Delenclos, S., Chirtoc, M.,
Sahraoui, A.H., Kolinsky, C. & Buisine, J.M. 2001. A new calibration
procedure for the determination of thermal parameters and their temperature
dependence using the photopyroelectric method. Analytical Sciences 17:
s161-s164.
Lide, R.D. 1997. Handbook of
Chemisty and Physics. 78th edition.
Boca Raton: CRC Press Inc.
Mandelis, A. 2011. Perspective:
Photopyroelectric effects and pyroelectric measurements: Photopyroelectric
calorimeter for the simultaneous thermal, optical, and structural
characterization of samples over phase transitions. Review of Scientific
Instruments 82(12901): 1-3.
Murphy, J.C. & Aamodt, L.C.
1980. Photothermal spectroscopy using
optical beam probing: Mirage effect. J.
Appl. Phys. 51: 4580.
Parker, W.J., Jenkins, R.J.,
Butler, C.P. & Abbot, G.L. 1961. Flash method of determining thermal
diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32: 1979.
Sang, L.H. 2003. Photopyroelectric
technique in thermal diffusivity determination and spectroscopic response of
solid. Master Thesis, University Putra Malaysia (Unpublished).
Taylor, R.E. & Maglic, K.D.
1984. In Compendium of Thermophysical Property Measurement Methods,
edited by Maglic, K.D., Cezairliyan, A. & Peletsky, V.E. 1st edition. New York: Plenum.
Wong, P., Fung, P. & Tam, H.
1998. Low thermal diffusivity measurements of thin films using mirage
technique. J. Appl. Phys. 84: 6623.
Zakaria, A., Sang, L.H., Abbas, Z.,
Yunus, W.M.M. & Hassan, J. 2006. Measurement of thermal parameter using
non-contact photopyroelectric method. ScienceAsia 32(1): 47-52.
*Corresponding author; email: kamilah@upm.edu.my
|