Sains Malaysiana
49(5)(2020): 1137-1144
http://dx.doi.org/10.17576/jsm-2020-4905-19
Circular Track Finding using
Hough Transform with Discretized Polling
(Penemuan Jejak Bulatan menggunakan Transformasi Hough dengan Peninjauan Diskret)
KHASMIDATUL AKMA MOHAMMAD KAMAL AZMI*, WAN AHMAD
TAJUDDIN WAN ABDULLAH, AU DIYA FATIHAH & MOHAMMAD SIDDIQ
National Centre
for Particle Physics, University of Malaya, 50603 Kuala Lumpur, Federal
Territory, Malaysia
Received: 20 September 2019/Accepted: 23 January 2020
ABSTRACT
The objective of
this paper was to show the results of single-parameter track
finding based on the Hough transform method with discretized hits in an
arbitrarily-sized Hough space. Each arbitrarily-sized Hough space was used to
identify the most optimal hits with respect to a simulation-generated track.
These hits will be useful in future studies involving multiple tracks as an
identification of single-track potential size which will decrease the
computational steps required to identify potential hits in multiple-track
studies. These steps are well established in track finding research. However,
the discretized method has not been applied fully because of uncertainty in
identifying true hits in the Hough space. We have observed that by selecting
the optimal discretized size, we can significantly improve the identification
of true hits as it reduces the number of unrelated hits. We show that these
steps are a more insightful technique compared to the traditional clustering
technique by comparing our results to the K-Mean nearest neighbour method.
Keywords: Accumulator; Hough
transform; K-Mean; optimal peak; track finding
ABSTRAK
Objektif kajian ini adalah untuk memperlihatkan hasil
penemuan jejak satu-parameter berdasarkan kaedah transformasi Hough dengan hit
yang diskret dalam ruang Hough dalam beberapa saiz tertentu. Setiap ruang Hough
dengan saiz berbeza digunakan untuk mengenal pasti hits paling optimum
berkenaan dengan jejak yang dihasilkan simulasi. Kajian hit ini akan berguna
dalam kajian masa depan yang melibatkan pelbagai jejak sebagai pengenalan
ukuran potensi satu hit yang akan mengurangkan langkah pengiraan yang
diperlukan untuk mengenal pasti hits yang berpotensi dalam jejak berganda.
Langkah ini dihasilkan
dalam penyelidikan mencari penyelesaian. Walau bagaimanapun, kaedah diskret
belum digunakan sepenuhnya kerana ketidakpastian dalam mengenal pasti hits
sebenar di dalam ruang Hough. Kami telah melihat bahawa dengan memilih saiz diskret
yang optimum, kami dapat meningkatkan pengenalan hits sebenar dengan ketara
berbanding jumlah hit yang tidak berkaitan. Kami menunjukkan bahawa langkah ini adalah teknik
yang lebih mendalam berbanding teknik berkelompok tradisi dengan
membandingkan hasil kami dengan kaedah jiran terdekat Min K.
Kata kunci: Carian jejak; Min K; pengumpulan; puncak optimal; transformasi
Hough
REFERENCES
Ahmed, S.R.A., Al Barazanchi, I., Jaaz, Z.A. &
Abdulshaheed, H.R. 2019. Clustering algorithms subjected to K-mean and gaussian
mixture model on multidimensional data set. Periodicals
of Engineering and Natural Sciences 7(2):
448-457.
Alexiev, K. 2000. Implementation of hough transform as
track detector. In Proceedings of the
Third International Conference on Information Fusion. Volume 2. pp.
THC4-11.
Bhattacharya, P., Liu, H., Rosenfeld, A. &
Thompson, S. 2000. Hough-transform detection of lines in 3-D space. Pattern
Recognition Letters 21(9): 843-849.
Imad
Dbbura. 2018. K-means clustering-algorithm, applications, evaluation methods,
and drawbacks. https://towardsdatascience.com/k-means-clustering-algorithm-applications-evaluation-methods-and-drawbacks-aa03e644b48a.
Krahe, J. & Pousset, P. 1988. The
detection of parallel straight lines with the application of the Hough
transform. 9th International Conference
on Pattern Recognition, Rome, Italy.
Hough, P.V.C. 1962. A method and means for recognizing
complex patterns. U.S. Patent: 3,069,654.
Priyanka Mukhopadhyay & Bidyut Baran Chaudhuri 2015. A survey of Hough Transform. Pattern
Recognition 48(3): 993-1010.
*Corresponding author; email: khasmidatul@siswa.um.edu.my
|