Sains Malaysiana 49(5)(2020): 1153-1164
http://dx.doi.org/10.17576/jsm-2020-4905-21
Two Stages Fitting Techniques using Generalized Lambda Distribution: Application on Malaysian Financial Return
(Teknik Penyuaian Dua Peringkat menggunakan Taburan Generalisasi Lambda: Aplikasinya ke atas Pulangan Kewangan Malaysia)
MUHAMMAD FADHIL MARSANI1,2* & ANI SHABRI1
1Department of Mathematics, Universiti Teknologi Malaysia, 81310, Johor Darul Takzim, Malaysia
2School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
Received: 24 June 2019/Accepted: 24 January 2020
ABSTRACT
The underline distribution assumption used in the
analysis of share market returns is crucial in risk management. An important
aspect related to stock return modelling is to obtain accurate prediction. This
paper presents an innovative fitting method called two stages (TS) method for
modelling daily stock returns. The proposed approach by first establishing
trend in the series, and then separately performing L-moment estimation on the
generalized lambda distribution (GLD) parameter. The performance of the TS-GLD
models had been evaluated using Monte Carlo simulation and Malaysian Kuala
Lumpur Composite Index (KLCI) returns from year 2001 to 2015. Based on k-sample
Anderson darling goodness of fit test, the two stages GLD model in location
parameter (GLD.1) performed well in all studied cases. The GLD.1 model benefits
risk management by providing effective distribution fitting.
Keywords: Fat-tailed
distributions; generalized
lambda distribution; L-moment; risk
management; stock returns
ABSTRAK
Andaian taburan yang digunakan dalam analisis pulangan
pasaran saham adalah penting dalam pengurusan risiko. Isu utama dalam
memodelkan pulangan saham adalah untuk mendapatkan anggaran yang tepat. Kajian
ini membentangkan kaedah penyuaian inovatif iaitu kaedah dua peringkat (TS)
dalam memodelkan pulangan saham harian. Pendekatan ini dijalankan dengan cara
mengenal pasti bentuk trend di dalam siri, kemudian
melaksanakan anggaran L-momen pada parameter taburan generalisasi lambda (GLD).
Prestasi model TS-GLD dinilai dengan menggunakan kaedah simulasi Monte
Carlo dan data sebenar iaitu Indeks Komposit Kuala Lumpur Malaysia (KLCI)
dari tahun 2001 hingga 2015. Berdasarkan ujian kebagusan k-sample Anderson
darling, model dua peringkat (TS) GLD bagi parameter lokasi (GLD.1)
menunjukkan prestasi yang lebih baik untuk semua kes yang dikaji. Model GLD.1
bermanfaat dalam pengurusan risiko dengan memberikan penyuaian taburan yang
lebih baik.
Kata kunci: L-momen; pengurusan risiko; pulangan saham; taburan berekor tebal; taburan generalisasi lambda
REFERENCES
Ab Razak, R. &
Ismail, N. 2019. Dependence modeling and portfolio risk estimation using
GARCH-Copula approach. Sains Malaysiana 48(7): 1547-1555.
Acharya, V., Engle, R. &
Richardson, M. 2012. Capital shortfall: A new approach to ranking and
regulating systemic risks. American Economic Review 102(3): 59-64.
Asquith, W.H. 2007. L-moments and
TL-moments of the generalized lambda distribution. Computational Statistics
& Data Analysis 51(9): 4484-4496.
Ben Slimane, F., Mehanaoui, M.
& Kazi, I. 2013. How does the financial crisis affect volatility behavior
and transmission among European stock markets? International Journal of
Financial Studies 1(3): 81-101.
Calvet, L.E. & Fisher, A. 2008. Multifractal Volatility: Theory, Forecasting, And Pricing. Massachusetts: Academic
Press.
Chalabi, Y., Diethelm, W. &
Scott, D.J. 2012. Flexible distribution modeling with the generalized lambda
distribution flexible distribution modeling with the generalized lambda
distribution. Munich Personal RePEc Archive https://mpra.ub.uni-muenchen.de/43333/.
Chalabi, Y., Scott, D.J. &
Würtz, D. 2009. The generalized lambda distribution as an alternative to model
financial returns. Eidgenössische Technische Hochschule and University of
Auckland, Zurich and Auckland. pp. 1-28.
Cont, R. 2001. Empirical properties
of asset returns: Stylized facts and statistical issues. Quantitative
Finance 1(2): 223-236
Corlu, C.G., Meterelliyoz, M. &
Tiniç, M. 2016. Empirical distributions of daily equity index returns: A
comparison. Expert Systems with Applications 54: 170-192.
Corrado, C.J. 2001. Option pricing
based on the generalized lambda distribution. Journal of Futures Markets 21(3): 213-236.
Cunderlik, J.M. & Burn, D.H.
2003. Non-stationary pooled flood frequency analysis. Journal of Hydrology 276(1-4): 210-223.
Ding, Z., Granger, C.W.J. &
Engle, R.F. 1993. A long memory property of stock market returns and a new
model. Journal of Empirical Finance 1(1): 83-106.
Dong, Y. & Wang, J. 2013.
Fluctuation behavior of financial return interval series model for percolation
on Sierpinski carpet lattice. Fractals 21(03n04): 1350023.
Fang, W. & Wang, J. 2012.
Statistical properties and multifractal behaviors of market returns by Ising
dynamic systems. International Journal of Modern Physics C 23(03):
1250023.
Fournier, B., Rupin, N., Bigerelle,
M., Najjar, D. & Iost, A. 2006. Application of the generalized lambda
distributions in a statistical process control methodology. Journal of
Process Control 16(10): 1087-1098.
Gabaix, X., Gopikrishnan, P.,
Plerou, V. & Stanley, H. E. 2003. A theory of power-law distributions in
financial market fluctuations. Nature 423(6937): 267.
Gagniuc, P.A. 2017. Markov
Chains: From Theory to Implementation and Experimentation. John Wiley &
Sons.
Gettinby, G.D., Sinclair, C.D.,
Power, D.M. & Brown, R.A. 2006. An analysis of the distribution of extremes
in indices of share returns in the US, UK and Japan from 1963 to 2000. International
Journal of Finance and Economics 11(2): 97-113.
Hasan, H., Radi, N.F.A. &
Kassim, S. 2012. Modeling of extreme temperature using Generalized Extreme
Value (GEV) distribution: A case study of Penang. Proceedings of the World
Congress on Engineering 2012 89: 82-89.
Hussain, S.I. & Li, S. 2015.
Modeling the distribution of extreme returns in the Chinese stock market. Journal
of International Financial Markets, Institutions and Money 34: 263-276.
Kantelhardt, J.W., Zschiegner,
S.A., Koscielny-Bunde, E., Havlin, S., Bunde, A. & Stanley, H.E. 2002.
Multifractal detrended fluctuation analysis of nonstationary time series. Physica
A: Statistical Mechanics and its Applications 316(1-4): 87-114.
Karian, Z.A. & Dudewicz, E.J.
2000. Fitting Statistical Distributions: The Generalized Lambda
Distribution and Generalized Bootstrap Methods.London: Chapman and Hall/CRC.
Longin, F.M.F.M. 1996. The
asymptotic distribution of extreme stock market returns. Journal of Business 69(3): 383-408.
Mandelbrot, B.B. 2013. Fractals
and Scaling in Finance: Discontinuity, Concentration, Risk. Selecta Volume
E. Springer Science & Business Media.
Mantegna, R.N. & Stanley, H.E.
1995. Scaling behaviour in the dynamics of an economic index. Nature 376(6535): 46-49.
Marsani, M.F. & Shabri, A.
2019. Random walk behaviour of Malaysia share return in different economic
circumstance formula. MATEMATIKA: Malaysian Journal of Industrial and
Applied Mathematics DOI: https://doi.org/10.11113/matematika.v35.n3.1105
Marsani, M.F., Shabri, A. &
Jan, N.A.M. 2017. Examine generalized lambda distribution fitting performance:
An application to extreme share return in Malaysia. Malaysian Journal of
Fundamental and Applied Sciences 13(3): 230-237.
Niu, H. & Wang, J. 2013a.
Volatility clustering and long memory of financial time series and financial
price model. Digital Signal Processing 23(2): 489-498.
Niu, H. & Wang, J. 2013b.
Power-law scaling behavior analysis of financial time series model by voter
interacting dynamic system. Journal of Applied Statistics 40(10):
2188-2203.
Ramberg, J.S. & Schmeiser, B.W.
1974. An approximate method for generating asymmetric random variables. Communications
of the ACM 17(2): 78-82.
Rizvi, S.A.R., Dewandaru, G.,
Bacha, O.I. & Masih, M. 2014. An analysis of stock market efficiency:
Developed vs Islamic stock markets using MF-DFA. Physica A: Statistical
Mechanics and its Applications 407: 86-99.
Scholz, F.W. & Stephens, M.A.
1987. K-sample Anderson–Darling tests. Journal of the American Statistical
Association. doi:10.1080/01621459.1987.10478517.
Sen, P.K. 1968. Estimates of the
regression coefficient based on Kendall’s tau. Journal of the American
Statistical Association 63(324): 1379-1389.
Stošić, D., Stošić, D.,
Stošić, T. & Stanley, H.E. 2015. Multifractal properties of price
change and volume change of stock market indices. Physica A: Statistical
Mechanics and its Applications 428: 46-51.
Suárez-García, P. &
Gómez-Ullate, D. 2014. Multifractality and long memory of a financial index. Physica
A: Statistical Mechanics and its Applications 394: 226-234.
Tolikas, K. 2014. Unexpected tails
in risk measurement: Some international evidence. Journal of Banking and
Finance 40(1): 476-493.
Tolikas, K. 2011. The rare event
risk in African emerging stock markets. Managerial Finance 37(3):
275-294.
Tolikas, K. 2008. Value-at-risk and
extreme value distributions for financial returns. Journal of Risk 10(3): 31-77.
Tolikas, K. & Gettinby, G.D.
2009. Modelling the distribution of the extreme share returns in Singapore. Journal
of Empirical Finance 16(2): 254-263.
Yu, Y. & Wang, J. 2012.
Lattice-oriented percolation system applied to volatility behavior of stock
market. Journal of Applied Statistics 39(4): 785-797.
*Corresponding author;
email: fadhilmarsani@gmail.com
|