Sains
Malaysiana 49(5)(2020): 1175-1190
http://dx.doi.org/10.17576/jsm-2020-4905-23
Hall Current and Joule Heating Effects on Peristaltic Flow
of a Sisko Fluid with Mild Stenosis through a Porous Medium in a Tapered Artery
with Slip and Convective Boundary Conditions
(Arus Hall dan Kesan Pemanasan
Joule pada Aliran Peristalsis Bendalir Sisko dengan Stenosis Lembap melalui
Medium Berliang dalam Arteri Tirus dengan Syarat Gelinciran dan Syarat Sempadan
Olakan)
NABIL T.M.
EL-DABE & DOAA R. MOSTAPHA*
Department of Mathematics, Faculty of Education, Ain Shams
University, Roxy, Cairo, Egypt
Received:
11 July 2019/Accepted: 15 January 2020
ABSTRACT
This work is arranged to investigate the Hall current and Joule
heating effects on peristaltic flow of a Sisko fluid through a porous medium.
The streaming is through tapered artery with mild stenosis. The influences of
radiative heat transfer and chemical reactions are taken in consideration.
Convective conditions are considered for heat and mass transfer. However, the
slip conditions are adopted for the velocity distribution. The combined effects
of viscous dissipation and radiation in energy expression are presented. Soret
and Dufour features produce the coupled differential systems. The presumptions
of the long wavelength and low Reynolds number are adopted to examine the
governing equations of motion. The analytical solutions of these equations are
given by two methods. The first one uses regular perturbation technique, which
based on small wave number for small artery. The second one is based on
utilizing the Homotopy perturbation technique. The approximate analytical
solutions of the pressure rise and friction force are predestined along a
numerical integration. The influences of various physical parameters of the
problem are debated and depicted graphically through a set of figures. It is
found that the axial velocity increases with the increase of Hall current
parameter and with the decrease of Hartmann number. Also, it can be observed
that the Brickmann number and Dufour number give rise to the fluid temperature.
Meanwhile, reverse effect is observed towards concentration for both Schmidt
number and chemical reaction number. Furthermore, the stream lines are
graphically shown.
Keywords:
Hall current; Joule heating; peristaltic flow; porous medium; Sisko model
ABSTRAK
Kajian ini mengkaji arus Hall dan kesan pemanasan Joule terhadap
aliran peristalsis bendalir Sisko melalui medium berliang. Aliran adalah
melalui arteri tirus dengan stenosis lembut. Pengaruh pemindahan haba sinaran
dan tindak balas kimia dipertimbangkan. Syarat perolakan dipertimbangkan bagi
pemindahan haba dan jisim. Walau bagaimanapun, syarat gelinciran digunakan
dalam taburan halaju. Kesan gabungan lesapan likat dan radiasi dalam ungkapan
tenaga dipersembahkan. Ciri-ciri Soret dan Dufour menghasilkan sistem persamaan
pembezaan terganding. Andaian panjang gelombang dan nombor Reynolds yang rendah
digunakan untuk mengkaji persamaan yang mengawal gerakan. Penyelesaian
beranalisis persamaan ini diberikan oleh dua kaedah. Yang pertama menggunakan
teknik usikan biasa, yang berdasarkan nombor gelombang kecil untuk arteri
kecil. Yang kedua adalah berdasarkan teknik usikan homotopi. Penyelesaian
analisis anggaran kenaikan tekanan dan daya geseran ditentukan menggunakan
kamiran berangka. Pengaruh pelbagai parameter fizikal bagi masalah ini dibahas
dan digambarkan secara grafik. Didapati bahawa halaju bertambah dengan
peningkatan parameter arus Hall dan dengan penurunan nombor Hartmann. Juga,
boleh diperhatikan bahawa nombor Brickmann dan nombor Dufour meningkatkan suhu
bendalir. Sementara itu, kesan bertentangan diperhatikan terhadap kepekatan untuk
kedua-dua nombor Schmidt dan nombor tindak balas kimia. Juga, garis arus
ditunjukkan secara grafik.
Kata
kunci: Aliran peristalsis; arus Hall; pemanasan Joule; medium berliang; model
Sisko
REFERENCES
Abdelsalam, S.I. & Bhatti, M.M. 2019. New insight into AuNP
applications in tumour treatment and cosmetics through wavy annuli at the
nanoscale. Scientific Reports 9(260): 1-14.
Abdelsalam, S.I. & Bhatti, M.M. 2018. The study of
non-Newtonian nanofluid with hall and ion slip effects on peristaltically
induced motion in a non-uniform channel. RSC Advances 8: 7904-7915.
Ang, K.C. & Mazumdar, J.N. 1997. Mathematical modeling of three
dimensional flow through an asymmetric arterial stenosis. Mathematical and
Computer Modelling 25(1): 19-29.
Arora, C.P. 1997. Heat and Mass Transfer. 2nd edition.
Delhi: Khanna Publishers.
Bhatti, M.M., Zeeshan, A. & Ellah, R. 2016. Simultaneous
effects of coagulation and variable magnetic field on peristaltically induced
motion of Jeffrey nanofluid containing gyrotactic microorganism. Microvascular
Research 110: 32-42.
Burns, J.C. & Parkes, T. 1967. Peristaltic motion. Journal
of Fluid Mechanics 29(4): 731-743.
Chakravarty, S. & Sen, S. 2005. Dynamic response of heat and
mass transfer in blood flow through stenosed bifurcated arteries. Korea-Australia
Rheology Journal 17(2): 47-62.
Chakravarty, S., Datta, A. & Mandal, P.K. 1995. Analysis of
nonlinear blood flow in a stenosed flexible artery. International Journal of
Engineering Science 33(12): 1821-1837.
Di Federico, V., Longo, S., King, S.E., Chiapponi, L., Petrolo, D.
& Ciriello, V. 2017. Gravity driven flow of Herschel-Bulkley fluid in a
fracture and in a 2D porous medium. Journal of Fluid Mechanics 821:
59-84.
El-dabe, N.T. & Abou-zeid, M. 2014. MHD peristaltic flow with
heat and mass transfer of micropolar biviscosity fluid through a porous medium
between two co-axial tubes. Arabian Journal for Science and Engineering 39(6): 5045-5062.
El-dabe, N.T., Moatimid, G.M., Hassan, M.A. & Mostapha, D.R.
2016. Effect of partial slip on peristaltic flow of a Sisko fluid with mild
stenosis through a porous medium. Applied Mathematics & Information
Sciences 10(2): 1-15.
El-dabe, N.T., Hassan, M.A. & Abou-zeid, M. 2015. Wall
properties effect on the peristaltic motion of a coupled stress fluid with heat
and mass transfer through a porous medium. Journal of Engineering Mechanics 142(3): 04015102.
El-dabe, N.T., Kamel, K.A., Galila Abd-Allah, M. & Ramadan,
S.F. 2013. Heat absorption and chemical reaction effects on peristaltic motion
of micropolar fluid through a porous medium in the presence of magnetic field. African
Journal of Mathematics and Computer Science Research 6(5): 94-101.
Eldabe, N.T., El-Sayed, M.F., Ghaly, A.Y. & Sayed, H.M. 2008.
Mixed convective heat and mass transfer in a non-Newtonian fluid at a
peristaltic surface with temperature-dependent viscosity. Archive of Applied
Mechanics 78: 599-624.
Eldabe, N.T., Ghaly, A.Y. & Sayed, H.M. 2007. MHD Peristaltic
flow of non-Newtonian fluid through a porous medium in circular cylindrical
tube. Bulletin of the Calcutta Mathematical Society 99: 123-136.
Fung, Y.C. & Yin, F. 1969. Peristaltic waves in circular
cylindrical tubes. Journal of Applied Mechanics 36(3): 579-587.
Hayat, T., Javed, S., Khan, M., Imran Khan, M. & Alsaedi, A.
2019. Physical aspects of irreversibility in radiative flow of viscous material
with cubic autocatalysis chemical reaction. European Physical Journal Plus 134(4): 1-24.
Hayat, T., Aslam, N., Khan, M., Imran Khan, M. & Alsaedi, A.
2018a. Physical significance of heat generation/absorption and Soret effects on
peristalsis flow of pseudoplastic fluid in an inclined channel. Journal of
Molecular Liquids 275: 599-615.
Hayat, T., Qayyum, S., Khan, M. & Alsaedi, A. 2018b. Entropy generation in
magnetohydrodynamic radiative flow due to rotating disk in presence of viscous
dissipation and Joule heating. Physics of Fluids 30(1): 017101.
Hayat, T., Zahir, H., Alsaedi, A. & Ahmad, B. 2017. Hall
current and Joule heating effects on peristaltic flow of viscous fluid in a
rotating channel with convective boundary conditions. Results in Physics 7: 2831-2836.
Hayat, T., Nawaz, S., Alsaedi, A. & Rafiq, M. 2016a. Mixed
convective peristaltic flow of water based nanofluids with Joule heating and
convective boundary conditions. PLoS ONE 11(4): 1-28.
Hayat, T., Rafiq, M. & Ahmad, B. 2016b. Soret and Dufour
effects on MHD peristaltic flow of Jeffrey fluid in a rotating system with
porous medium. PLoS ONE 11(1): 1-18.
Hayat, T., Iqbal, R., Tanveer, A. & Alsaedi, A. 2016. Influence
of convective conditions in radiative peristaltic flow of pseudoplastic
nanofluid in a tapered asymmetric channel. Journal of Magnetism and Magnetic
Materials 408: 168-176.
Hayat, T., Abbasi, F.M., Ahmad, B. & Alsaedi, A. 2014. MHD
mixed convection peristaltic flow with variable viscosity and thermal
conductivity. Sains Malaysiana 43(10): 1583-1590.
He, J.H. 1999. Homotopy perturbation technique. Computer Methods
in Applied Mechanics & Engineering 178(3-4): 257-262.
Ijaz, N., Zeeshan, A., Bhatti, M.M. & Ellahi, R. 2008.
Analytical study on liquid-solid particles interaction in the presence of heat
and mass transfer through a wavy channel. Journal of Molecular Liquids 250: 80-87.
Jaffrin, M.Y. 1973. Inertia and streamline curvature effects on
peristalsis pumping. International Journal of Engineering Science 11(6):
681-699.
Jamil, D.F., Roslan, R., Abdulhameed, M. & Hashim, I. 2018.
Controlling the blood flow in the stenosed porous artery with magnetic field. Sains
Malaysiana 47(10): 2581-2587.
Khan, M., Abbas, Q. & Duru, K. 2010. Magnetohydrodynamic flow
of a Sisko fluid in annular pipe: A numerical study. International Journal
for Numerical Method in Fluids 62(10): 1169-1180.
Lauriola, I., Felisa, G., Petrolo, D., Di Federico, V. & Longo,
S. 2018. Porous gravity currents: Axisymmetric propagation in horizontally
graded medium and a review of similarity solutions. Advances in Water
Resources 115: 136-150.
Longo, S. & Di Federico, V. 2015. Unsteady flow of
shear-thinning fluids in porous media with pressure-dependent properties. Transport
in Porous Media 110(3): 429-447.
Mandal, P.K. 2005. An unsteady of non-Newtonian blood flow through
tapered arteries with a stenosis. International Journal of Non-Linear
Mechanics 40(1): 151-164.
Manton, M.J. 1975. Long-wavelength peristaltic pumping at low
Reynolds number. Journal of Fluid Mechanics 68(3): 467-476.
Mehmood, O.U., Mustapha, N. & Hayat, T. 2014. Partial slip effect on heat and mass
transfer of MHD peristaltic transport in a porous medium. Sains Malaysiana 43(7): 1109-1118.
Mekheimer, K.S. & El Kot, M.A. 2012. Mathematical modelling of
unsteady flow os a Sisko fluid through an anisotropically tapered elastic
arteries with time variant overlapping stenosis. Applied Mathematical
Modelling 36(11): 5393-5407.
Nadeem, S. & Akbar, N.S. 2010. Peristaltic flow of Sisko fluid
in a uniform inclined tube. Acta Mechanica Sinica 26: 675-683.
Nadeem, S. & Akbar, N.S. 2009. Influence of heat transfer on a
peristaltic transport of Herschel Bulkley fluid in a non-uniform inclined tube. Nonlinear Science & Numerical Simulation 14(12): 4100-4113.
Nichols, W.W. & Orourke, M.F. 1973. McDonald's Blood Flow in
Arteries. New York: Oxford University Press Inc.
Pal, D. & Talukdar, B. 2011. Combined effects of Joul heating
and chemical reaction on unsteady magnetohydrodynamic mixed convection of a
viscous dissipating fluid over a vertical plate in porous media with thermal
radiation. Mathematical and Computer Modelling 54(11-12): 3016-3036.
Rashid, M., Khan, M., Hayat, T., Imran Khan, M. & Alsaedi, A.
2019. Entropy generation in flow of ferromagnetic liquid with nonlinear
radiation and slip condition. Journal of Molecular Liquids 276: 441-452.
Rohsenow, W.M., Hartnett, J.P. & Cho, Y.I. 1998. Handbook of
Heat Transfer. New York: McGraw-Hill.
Sadaf, H. & Nadeem, S. 2017. Analysis of combined convective
and viscous dissipation effects for peristaltic flow of Rabinowitsch fluid
model. Journal of Bionic Engineering 14(1): 182-190.
Scheidegger, A.E. 1963. The Physics of Flow through Porous Media.
New York: McGraw-Hill.
Shapiro, A.H., Jaffrin, M.Y. & Weinberg, S.L. 1969. Peristaltic
pumping with long wavelengths at low Reynolds number. Journal of Fluid
Mechanics 37(4): 799-825.
Siddiqui, A.M., Azim, Q.A., Ashraf, A. & Ghori, Q.K. 2008.
Homotopy perturbation solution for peristaltic flow of a third order fluid. Topological
Methods in Nonlinear Analysis 31: 331-339.
Sisko, A.W. 1958. The flow of lubricating greases. Industrial
& Engineering Chemistry 50(12): 1789-1792.
Sohail, M., Naz, R. & Abdelsalam, S.I. 2019. On the onset of
entropy generation for a nanofluid with thermal radiation and gyrotactic
microorganisms through 3D flows. Physica Scripta.
https://doi.org/10.1088/1402-4896/ab3c3f.
Verma, N. & Parihar, R.S. 2010. Mathematical model of blood
flow through a tapered artery with mild stenosis and hematocrit. Journal of
Modern Mathematics and Statistics 4(1): 38- 43.
*Corresponding author; email: doaaroshdy@edu.asu.edu.eg
|