Sains
Malaysiana 49(5)(2020): 1191-1200
http://dx.doi.org/10.17576/jsm-2020-4905-24
Mathematical Model of Dengue Virus with Predator-Prey Interactions
(Model
Matematik Virus Denggi dengan
Interaksi Pemangsa-Mangsa)
SARINAH BANU
MOHAMED SIDDIK1*, FARAH AINI ABDULLAH2 & AHMAD IZANI
MD. ISMAIL2
1Institute of Engineering Mathematics,
Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
2School of Mathematical Sciences, Universiti
Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
Received: 8 August 2019/Accepted: 15 January 2020
ABSTRACT
In this
paper, a mathematical model of dengue incorporating two sub-models that: describes the linked dynamics between
predator-prey of mosquitoes at the larval stage, and describes the dengue spread between humans and
adult mosquitoes, is formulated to simulate the dynamics of dengue spread. The
effect of predator-prey dynamics in controlling the dengue disease at the
larval stage of mosquito populations is investigated. Stability analysis of the
equilibrium points are carried out. Numerical simulations results indicate that
the use of predator-prey dynamics of mosquitoes at the larval stage as
biological control agents for controlling the larval stage of dengue mosquito
assists in combating dengue virus contagion.
Keywords:
Dengue virus; endemic equilibrium; numerical simulation; predator-prey
ABSTRAK
Dalam kertas ini, satu model
matematik denggi yang menggabungkan dua sub-model iaitu: menerangkan dinamik antara nyamuk pemangsa-mangsa pada peringkat jejentik dan menerangkan
penyebaran denggi antara manusia dan nyamuk dewasa, diformulasikan untuk
mensimulasi dinamik penyebaran denggi. Kesan dinamik pemangsa-mangsa untuk mengawal penyakit denggi pada
peringkat jejentik populasi nyamuk diselidik. Analisis kestabilan titik
kesimbangan dijalankan. Simulasi berangka menunjukkan bahawa penggunaan dinamik
pemangsa-mangsa nyamuk pada peringkat jejentik sebagai agen kawalan biologi
untuk mengawal tahap jejentik nyamuk denggi membantu dalam memerangi penularan
virus denggi.
Kata
kunci: Keseimbangan endemik; pemangsa-mangsa; simulasi berangka; virus
denggi
REFERENCES
Ali,
T.M., Kamil, A.A. & Karim, M.F.A. 2015. Deterministic mathematical model of
dengue disease spread. Far East Journal
of Mathematical Sciences 96(4):
419-436.
Al-Sulami,
H., El-Shahed, M., Nieto, J.J. & Shammakh, W. 2014. On fractional order
dengue epidemic model. Hindawi Publishing
Corporation 2014: 456537.
Andraud,
M., Hens, N., Marais, C. & Beutels, P. 2012. Dynamic epidemiological models
for dengue transmission: A systematic review of structural. PLoS Comput. Biol. 7(11): 332-346.
Bailey,
N.T.J. 1975. The Mathematical Theory of
Infectious Diseases and Its Applications. London: Griffin.
Benelli,
G., Jeffries, C.L. & Walker, T. 2016. Biological control of mosquito
vectors: Past, present and future. Insects 7(4): e52.
Cooke,
K.L. & Van Den Driessche, P. 1996. Analysis of an SEIRS epidemic model with
two delays. Journal of Mathematical
Biology 35(2): 240-260.
Derouich,
M. & Boutayeb, A. 2006. Dengue fever: Mathematical modelling and computer
simulation. Applied Mathematics and
Computation 177(2): 528-544.
Diekmann, O., Heesterbeek, J. & Metz, J.A. 1990.
On the definition and the computation of the basic reproduction ratio
in models for
infectious diseases in heterogeneous populations. Journal of Mathematical Biology 28(4): 365-382.
Erikson, R.A., Presley, S.M., Allen, L.J.S., Long, K.R. & Cox, S.B.
2011a. A stage-structured, Aedes albopictus population model. Ecological Modelling 221(9): 1273-1282.
Erikson, R.A., Presley, S.M., Allen, L.J.S., Long, K.R. & Cox, S.B.
2011b. A dengue model with a dynamic Aedes albopictus vector population. Ecological Modelling221(24):
2899-2908.
Esteva, L. & Vargas, C. 1998. Analysis of a dengue
disease transmission model. Mathematical
Biosciences 150(2): 131-151.
Ghosh, M., Lashari, A.A. & Li, X.Z. 2013.
Biological control of malaria: A mathematical model. Applied Mathematics and Computation 219(15): 7923-7939.
Heffernan, J.M., Smith, R.J. & Wahl, L.M. 2005.
Perspectives on the basic reproductive ratio. Journal of the Royal Society Interface 2(4): 281-293.
Huang, Y.J.S.,
Stephens, H. & Vanlandingham, D.L. 2017. Biological control strategies for
mosquito vectors of arboviruses. Insect 8(1): 21-28.
Hove-Musekwa, S.D. 2008. Determining effective
spraying periods to control malaria via indoor residual spraying in
Sub-Saharan Africa. Journal of Applied
Mathematics and Decision Sciences 2008:
745463.
Lou, Y. & Zhao, X.Q. 2011. Modelling malaria
control by introduction of larvivorous fish. Bulletin of Mathematical Biology 73(10): 2384-2407.
Menach, A.L., McKenzie, F.E., Flahault, A. &
Smith, D.L. 2005. The unexpected importance of mosquitoes oviposition behavior
for malaria: Non-productive larval habitats can be sources for malaria
transmission. Malaria Journal 4(1): e23.
Moore, S.M., Borer, E.T. & Hosseini, P.R. 2010.
Predators indirectly control vector borne disease: Linking predator-prey and
host-pathogen models. Journal of
the Royal Society Interface 7(42):
161-176.
Nuraini, N., Tasman, H., Soewono, E. & Sidarto,
K.A. 2009. A with-in host dengue infection model with immune response. Mathematical and Computer Modelling 49(5-6): 1148-1155.
Nyamah, M.A., Sulaiman, S. & Omar, B. 2011. Field
observation on the efficacy of Toxorhynchites
splendens (wiedemann) as a
biocontrol agent against Aedes albopictus
(skuse) larvae in a cemetery. Trop.
Biomed.28(2): 312-319.
Ong, S.Q. 2016. Dengue vector control in Malaysia: A
review for current and alternative strategies. Sains Malaysiana 45(5): 777-785.
Pandey, A., Mubayi, A. & Medlock, J. 2013.
Comparing vector-host and SIR models for dengue transmission. Mathematical Biosciences 246(2): 252-259.
Rodrigues, H.S., Monteiro, M.T.T., Torres, D.F.M.
& Zinober, A. 2012. Dengue disease, basic reproduction number and control. International Journal of Computer
Mathematics 89(3): 334-346.
Steffan, W.A. & Evenhuis, N.L. 1981. Biology of Toxorhynchites. Annual Review of Entomology 26:
159-181.
Wen, T.H., Tsai, C.T. & Chin, W.C.B. 2016.
Evaluating the role of disease importation in the spatiotemporal transmission
of indigenous dengue outbreak. Applied
Geography 76: 137-146.
World Health Organization (WHO). 2016. Dengue Report 2016. http://www.who.int/dengue/publications/world_dengue_report_2016/report/en.
Yang, H.M. & Ferreira, C.P. 2008. Assessing the
effects of vector control on dengue transmission. Applied Mathematics and Computation 198: 401-413.
Zaini,
Z.I.I., Othman, H., Karim, N., Rashid, N.A.A., Abas, M.B.H., Sahani, M., Hod,
R. & Nordin, S.A. 2019. Knowledge and practices regarding Aedes control amongst residents of
dengue hotspot areas in Selangor: A cross-sectional study. Sains Malaysiana 48(4):
841-849.
Zuharah, W.F., Fadzly, N., Yusof, N.A. & Dieng, H.
2015. Risky behaviors: Effects of Toxorhynchites
splendens (Diptera:culicidae) predator behavior of three mosquito species. Journal of Insect Sciences 15(1): 128-134.
*Corresponding
author; email: sarinah@unimap.edu.my
|