Sains
Malaysiana 49(5)(2020):
979-988
http://dx.doi.org/10.17576/jsm-2020-4905-02
Simple
and Sensitive Electrokinetic Supercharging in Capillary Electrophoresis for
Online Preconcentration and Separation of Secbumeton in Water Samples
(Superpengesan
Elektrokinetik Ringkas dan Sensitif dalam Elektroforesis Rerambut Prapemerkatan
secara Terus dan Permisahan Sekbumeton dalam Sampel Air)
RASMEY SOEUNG1,2, NADHIRATUL-FARIHIN SEMAIL1, WAN ADNAN WAN OMAR1, NUR NADHIRAH MOHAMAD ZAIN1, MAZIDATULAKMAM MISKAM3, YONG FOO WONG3, AEMI SYAZWANI ABDUL KEYON4, MUGGUNDHA RAOOV RAMACHANDRAN5, SAZLINDA KAMARUZAMAN6,7 & NOORFATIMAH YAHAYA1*
1Integrative
Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti
Sains Malaysia, 13200 Bertam Kepala Batas, Penang, Malaysia
2Royal
University of Agriculture, 12400 Dangkor District, Phnom Penh, Cambodia
3School
of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden Penang, Malaysia
4Department
of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM
Johor Bahru, Johor Darul Takzim, Malaysia
5Department
of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur,
Federal Territory, Malaysia
6Department
of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang,
Selangor Darul Ehsan, Malaysia
7Centre
for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and
Industrial Research, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor
Darul Takzim, Malaysia
Received:
26 January 2019/Accepted: 19 January 2020
ABSTRACT
This study describes an electrokinetic
supercharging for online preconcentration capillary electrophoresis (CE)
technique of secbumeton in water samples. Important CE separation and
preconcentration conditions, such as concentration and pH of the background
electrolyte, applied voltage and ultraviolet wavelength, type and injection
time of the terminating electrolyte, and injection time of the leading
electrolyte and sample were investigated and optimized. The optimum conditions
involved hydrodynamic injection of leading electrolyte (100 mM sodium chloride,
30 s, 50 mbar), electrokinetic injection of the sample as high as 250 s (at +7
kV voltage), and hydrodynamic injection of terminating electrolyte (100 mM Tris
buffer, 40 s, 50 mbar). This strategy enhanced secbumeton detection sensitivity
up to 3847-fold and 2267-fold when compared with hydrodynamic and
electrokinetic injection, respectively, providing a limit of detection as low
as 0.03 µg L–1 with good repeatability (relative standard deviation
< 4%, n = 5). Wide linear range (0.1–500 µg L–1) with good
linearity (R2 = 0.9997) was obtained. The limit of detection was
adequate for the analysis of secbumeton in water samples with concentrations
lower than its maximum residual limit (0.1 µg L–1). The developed
method was applied to environmental water samples, and recoveries were between
85.7 and 105.6%.
Keywords: Capillary electrophoresis; electrokinetic
supercharging; environmental water samples; online preconcentration; secbumeton
ABSTRAK
Kajian ini menerangkan
suatu superpengecasan elektrokinetik bagi prapemekatan secara terus teknik
elektroforesis rerambut (CE) bagi sekbumeton di dalam sampel air. Pemisahan CE
dan keadaan prapemekatan yang penting seperti kepekatan dan pH bagi latar
belakang elektrolit, voltan gunaan dan panjang gelombang ultraviolet, jenis dan
masa suntikan bagi elektrolit penamat dan masa suntikan bagi elektrolit pemula
dan sampel telah dikaji dan dioptimumkan. Keadaan optimum termasuklah suntikan
hidrodinamik bagi elektrolit pemula (100 mM natrium klorida, 30 s, 50 mbar),
suntikan elektrokinetik bagi sampel setinggi 250 s (pada +7 kV voltan) dan
suntikan hidrodinamik bagi elektrolit penamat (100 mM larutan penimbal TRIS, 40
s, 50 mbar). Strategi ini meningkatkan kepekaan penentuan sekbumeton sehingga
3847-gandaan dan 2267-gandaan apabila dibandingkan dengan masing-masing,
suntikan hidrodinamik dan elektrokinetik, dengan memberi had pengesanan serendah
0.03 µg L–1 dengan kebolehulangan yang baik (sisihan piawai relatif
< 4 %, n = 5). Julat linear yang besar (0.1–500 µg L–1) dengan
kelinearan yang baik (R2 = 0.9997) telah diperoleh. Had pengesanan
ini adalah mencukupi bagi menganalisa sekbumeton di dalam sampel air dengan kepekatan
yang lebih rendah daripada had surih maksimum (0.1 µg L–1). Kaedah
yang telah dibangunkan telah digunakan bagi sampel air sekitaran dan
pengembalian adalah antara 85.7 dan 105.6%.
Kata kunci: Elektroforesis rerambut; prapemekatan
secara terus; sampel air sekitaran; sekbumeton; superpengecasan elektrokinetik
REFERENCES
Abdul Karim, N.’I., Wan Ibrahim, W.A., Sanagi, M.M.
& Abdul Keyon, A.S. 2016. Online preconcentration by electrokinetic
supercharging for separation of endocrine disrupting chemical and phenolic
pollutants in water samples. Electrophoresis 37(20): 2649-2656.
Acedo-Valenzuela, M.I., Galeano-Díaz,
T., Mora-Díez, N. & Silva-Rodríguez, A. 2004. Determination of neutral and
cationic herbicides in water by micellar electrokinetic capillary
chromatography. Analytica Chimica Acta 519(1): 65-71.
Altria, K.D. 1996. Chapter 1.
Fundamentals of capillary electrophoresis theory. In Capillary
Electrophoresis Guidebook. Volume 52. Springer. pp. 3-13.
Alvarsson, A. 2012. Assessing the
environmental impact of pesticides: Effects of photosystem ii inhibiting
herbicides on primary production and ecosystems. Degree Project for Master of
Science in Ecotoxicology 30 ECTS. Department of Biology and Environmental
Sciences, University of Gothenburg, Sweden pp. 1-58. (Unpublished).
Arribas, A.S., Moreno, M., Bermejo,
E., Zapardiel, A. & Chicharro, M. 2011. CZE separation of amitrol and
triazine herbicides in environmental water samples with acid-assisted on-column
preconcentration. Electrophoresis 32(2): 275-283.
Botello, I., Borrull, F., Calull, M.
& Aguilar, C. 2013. Electrokinetic supercharging in CE for the separation
and preconcentration of barbiturate drugs in urine samples. Journal of
Separation Science 36(3): 524-531.
Cazes, J. 2010. Encyclopedia of
chromatography. Crop Science 2(6): 1419.
Dawod, M., Breadmore, M.C., Guijt,
R.M. & Haddad, P.R. 2008. Electrokinetic supercharging for on-line
preconcentration of seven non-steroidal anti-inflammatory drugs in water
samples. Journal of Chromatography A 1189(1-2): 278-284.
Dawod, M., Breadmore, M.C., Guijt,
R.M. & Haddad, P.R. 2009. Counter-flow electrokinetic supercharging for the
determination of non-steroidal anti-inflammatory drugs in water samples. Journal
of Chromatography A 1216(15): 3380-3386.
Gao, Y., Zhou, Q., Xie, G. & Yao,
Z. 2012. Temperature-controlled ionic liquid dispersive liquid-phase
microextraction combined with HPLC with ultraviolet detector for the
determination of fungicides. Journal of Separation Science 35(24): 3569-3574.
Grossman, P.D. 1992. Factors
affecting the performance of capillary elecrophoresis separations: Joule
heating, electroosmosis, and zone dispersion. In Capillary Electrophoresis:
Theory and Practice, edited by Grossman,
P.D. & Colburn, J.C. Massachusetts: Academic Press. p. 352.
Hirokawa, T., Okamoto, H. & Gaš,
B. 2003. High-sensitive capillary zone electrophoresis analysis by
electrokinetic injection with transient isotachophoretic preconcentration: Electrokinetic
supercharging. Electrophoresis 24(3): 498-504.
Jablonowski, N.D., Schäffer, A. &
Burauel, P. 2011. Still present after all these years: Persistence plus
potential toxicity raise questions about the use of atrazine. Environmental
Science and Pollution Research 18(2): 328-331.
Ji, F., Zhao, L., Yan, W., Feng, Q.
& Lin, J.M. 2008. Determination of triazine herbicides in fruits and
vegetables using dispersive solid-phase extraction coupled with LC-MS. Journal
of Separation Science 31(6-7): 961-968.
Khaledi, M.G. 1998. High-performance
capillary electrophoresis. Theory, techniques and applications. Chemical
Analysis 146: 4930-4931.
Landers, J.P. 1998. Handbook of
capillary electrophoresis. Journal of Liquid Chromatography & Related
Technologies 21(1-2): 263-266.
LeBaron, H.M., McFarland, J.E. &
Burnside, O.C. 2008. Chapter 1 - The Triazine Herbicides: A Milestone in the
Development of Weed Control Technology. Volume 2016. Elsevier.
Li, X., Sun, Y., Sun, Q., Liang, L.,
Piao, H., Jiang, Y., Yu, A., Song, D. & Wang, X. 2017. Ionic-liquid-functionalized
zinc oxide nanoparticles for the solid-phase extraction of triazine herbicides
in corn prior to high-performance liquid chromatography analysis. Journal of
Separation Science 40(14): 2992-2998.
Liang, L., Wang, X., Sun, Y., Ma, P.,
Li, X., Piao, H., Jiang, Y. & Song, D. 2018. Magnetic solid-phase
extraction of triazine herbicides from rice using metal-organic framework
mil-101(cr) functionalized magnetic particles. Talanta 179(11): 512-519.
Liu, T., Cao, P., Geng, J., Li, J.,
Wang, M., Wanga, M., Li, X. & Yin, D. 2014. Determination of triazine
herbicides in milk by cloud point extraction and high-performance liquid
chromatography. Food Chemistry 142: 358-364.
Lu, Y., Wang, D., Kong, C., Zhong, H.
& Breadmore, M.C. 2014. Analysis of aromatic acids by nonaqueous capillary
electrophoresis with ionic-liquid electrolytes. Electrophoresis 35(23): 3310-3316.
Nousiainen, A.O., Björklöf, K.,
Sagarkar, S., Nielsen, J.L., Kapley, A. & Jørgensen, K.S. 2015. Bioremediation
strategies for removal of residual atrazine in the boreal groundwater zone. Applied
Microbiology and Biotechnology 99(23): 10249-10259.
Pantůčková, P., Kubáň,
P. & Boček, P. 2015. Sensitivity enhancement in direct coupling of
supported liquid membrane extractions to capillary electrophoresis by means of
transient isotachophoresis and large electrokinetic injections. Journal of
Chromatography A 1389: 1-7.
Piutti, S., Hallet, S., Rousseaux,
S., Philippot, L., Soulas, G. & Martin-Laurent, F. 2002. Accelerated
mineralisation of atrazine in maize rhizosphere soil. Biology and Fertility
of Soils 36(6): 434-441.
Qi, M., Yien, L. & Heng, H. 2017.
Integration of the free liquid membrane into electrokinetic supercharging-capillary
electrophoresis for the determination of cationic herbicides in environmental
water samples. Journal of Chromatography A 1481: 145-151.
Reutemann, W., Kieczka, H.,
Reutemann, W. & Kieczka, H. 2011. Formic acid. Ullmann’s Encyclopedia of
Industrial Chemistry. pp. 1-22.
Rodríguez-González, N.,
González-Castro, M.J., Beceiro-González, E., Muniategui-Lorenzo, S. &
Prada-Rodríguez, D. 2014. Determination of triazine herbicides in seaweeds: Development
of a sample preparation method based on matrix solid phase dispersion and solid
phase extraction clean-up. Talanta 121: 194-198.
Safe Environments Programme. 2006. Guidelines for Canadian Drinking Water
Quality: Guideline technical document: Trihalomethanes - Health Canada.
1993: 1-9.
Sagarkar, S., Mukherjee, S.,
Nousiainen, A., Björklöf, K., Purohit, H.J., Jorgensen, K.S. & Kapley, A.
2013. Monitoring bioremediation of atrazine in soil microcosms using molecular
tools. Environmental Pollution 172: 108-115.
Sanagi, M.M., Abbas, H.H., Ibrahim,
W.A.W. & Aboul-Enien, H.Y. 2012. Dispersive liquid-liquid microextraction
method based on solidification of floating organic droplet for the
determination of triazine herbicides in water and sugarcane samples. Food
Chemistry 133(2): 557-562.
See, H.H., Marsin Sanagi, M.,
Ibrahim, W.A.W. & Naim, A.A. 2010. Determination of triazine herbicides
using membrane-protected carbon nanotubes solid phase membrane tip extraction
prior to micro-liquid chromatography. Journal of Chromatography A 1217(11): 1767-1772.
Siripattanakul, S., Wirojanagud, W.,
McEvoy, J., Limpiyakorn, T. & Khan, E. 2009. Atrazine degradation by stable
mixed cultures enriched from agricultural soil and their characterization. Journal
of Applied Microbiology 106(3): 986-992.
Wang, H., Li, G., Zhang, Y., Chen,
H., Zhao, Q., Song, W., Xu, Y., Jin, H. & Ding, L. 2012. Determination of
triazine herbicides in cereals using dynamic microwave-assisted extraction with
solidification of floating organic drop followed by high-performance liquid
chromatography. Journal of Chromatography A 1233: 36-43.
Wang, X. & Chen, Y. 2009.
Determination of aromatic amines in food products and composite food packaging
bags by capillary electrophoresis coupled with transient isotachophoretic
stacking. Journal of Chromatography A 1216(43): 7324-7328.
Watershed Management Section. 2016.
Water quality standards for surface waters of the state of washington chapter
173-201a WAC. Water Quality Standards for Surface Waters of the State of
Washington (6): 1-134.
Weinberger,
R. 2000. Capillary zone electrophoresis: Methods development. In Practical Capillary Electrophoresis. 2nd ed. Massachusetts: Academic Press.
Wen, Y., Liu, H., Han, P., Gao, Y.,
Luan, F. & Li, X. 2010. Determination of melamine in milk powder, milk and
fish feed by capillary electrophoresis: A good alternative to HPLC. Journal
of the Science of Food and Agriculture 90(13): 2178-2182.
Yamaguchi, N., Gazzard, D., Scholey,
G. & Macdonald, D.W. 2003. Concentrations and hazard assessment of pcbs,
organochlorine pesticides and mercury in fish species from the upper thames: River
pollution and its potential effects on top predators. Chemosphere 50(3):
265-273.
Yan, Y., Yu, J., Jiang, Y., Hu, Y.,
Cai, M., Hsam, S.L.K. & Zeller, F.J. 2003. Capillary electrophoresis
separation of high. Electrophoresis 24: 1429-1436.
Yang, X., Yu, R., Zhang, S., Cao, B.,
Liu, Z., Lei, L., Li, N., Wang, Z., Zhang, L., Zhang, H. & Chen, Y. 2014.
Aqueous two-phase extraction for determination of triazine herbicides in milk
by high-performance liquid chromatography. Journal of Chromatography B:
Analytical Technologies in the Biomedical and Life Sciences 972: 111-116.
Zhao, G., Song, S., Wang, C., Wu, Q.
& Wang, Z. 2011. Determination of triazine herbicides in environmental
water samples by high-performance liquid chromatography using graphene-coated
magnetic nanoparticles as adsorbent. Analytica Chimica Acta 708(1-2): 155-159.
*Corresponding
author; email: noorfatimah@usm.my
|