Sains Malaysiana
49(6)(2020): 1401-1410
http://dx.doi.org/10.17576/jsm-2020-4906-18
The Differences between the
Expression Levels of axe-txe Genes in Chloramphenicol-Sensitive and
Penicillin-Resistant Enterococcus faecium Isolates
(Perbezaan
antara Tahap Ekspresi Gen axe-txe dalam Pencilan Enterococcus faecium yang Peka Kloramfenikol dan Tahan
Penisilin)
SRI INDRA WAHYUNI MOHD IRMAL1,
SURESH KUMAR SUBBIAH1, VASANTHA KUMARI NEELA1, NIAZLIN
MOHD TAIB1, AZMIZA SYAWANI JASNI1, MAHA ABDULLAH2,
MOHAMAD KHAIRIL RADZALI3 & RUKMAN AWANG HAMAT1*
1Department of Medical Microbiology
and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
2Department of Pathology, Faculty of
Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang,
Selangor Darul Ehsan, Malaysia
3Department of Microbiology, Faculty
of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400
UPM Serdang, Selangor Darul Ehsan, Malaysia
Received:
10 June 2019/Accepted: 3 February 2020
ABSTRACT
Toxin-antitoxin (TA) systems are important regulatory
modules in bacterial physiological functions. In this study, Axe-Txe TA system of 20 Enterococcus faecium clinical isolates was
investigated by polymerase chain reaction (PCR) using self-designed primers.
The functionality of this TA system in two E. faecium isolates was evaluated by analysing the expression level of axe-txe genes using real-time quantitative PCR (RT-qPCR) in penicillin-resistant
and chloramphenicol-sensitive environments at different points of time.
Colony-forming units (CFU) of the bacteria were also measured at a similar point of time. The selection of these two isolates for TA
functionality study was determined based on the susceptibility patterns of the
two isolates to penicillin, the chloramphenicol via Kirby-Baur, and broth
microdilution methods, which were then interpreted based on CLSI guidelines. Axe-Txe TA system was detected in both chromosomes
and plasmids (100%, each) in all 20 isolates, while the selected two E.
faecium isolates were sensitive to
chloramphenicol (MIC = 4 µg/mL) and resistant to
penicillin (MIC = 256 µg/mL). Although higher axe-txe genes
expression was also observed in a chloramphenicol-sensitive
environment at half an hour of the incubation period compared to the
penicillin-resistant environment, higher expression of the axe-txe genes was found in the penicillin-resistant environment at 1 h
incubation period compared to the chloramphenicol-sensitive environment.
Nevertheless, E. faecium isolates in
both environments exhibited higher expression of txe gene (toxin) at
the 24 h incubation period. Provided that the
functionality of TA systems of E. faecium isolates may vary in different antibiotic environments, various
environmental conditions need to be considered in the role of TA systems as
potential antimicrobial targets. Different expression of TA genes in different
antibiotic environments and points of time may influence the discovery and
development of drugs in the future.
Keywords: axe-txe genes; Enterococcus
faecium; toxin-antitoxin system
ABSTRAK
Sistem toksin-antitoksin (TA) adalah modul kawalan penting
dalam fungsi fisiologi bakteria. Dalam kajian ini, sistem Axe-Txe TA dalam 20
pencilan klinikal Enterococcus
faecium dikaji menerusi kaedah tindak
balas rantai polimerase (PCR) menggunakan primer-primer yang direka sendiri.
Fungsi sistem TA ini dalam dua pencilan E. faecium dinilai dengan menganalisis tahap ekspresi gen axe-txe menggunakan PCR kuantitatif masa nyata (RT-qPCR) dalam persekitaran
tahan penisilin dan peka terhadap kloramfenikol pada masa yang berlainan. Unit
pembentuk koloni (CFU) bakteria juga diukur pada tempoh waktu yang sama. Dua pencilan yang digunakan untuk kajian fungsi TA
telah dipilih berdasarkan corak kerentanannya terhadap penisilin, kloramfenikol
melalui kaedah Kirby-Baur, dan kaedah pencairan-mikro bubur, yang kemudian
ditafsirkan berdasarkan garis panduan CLSI. Sistem Axe-Txe TA dikesan pada
kedua-dua kromosom dan plasmid (100%, masing-masing) di semua 20 pencilan,
sementara dua pencilan E. faecium yang dipilih peka terhadap kloramfenikol (MIC = 4 µg/mL) dan tahan terhadap penisilin (MIC = 256 µg/mL). Walaupun ekspresi gen axe-txe yang lebih tinggi juga diperhatikan dalam
persekitaran peka kloramfenikol pada setengah jam dari masa inkubasi berbanding
dengan persekitaran tahan penisilin, ekspresi gen axe-txe yang lebih tinggi didapati di persekitaran
tahan penisilin pada 1 jam tempoh inkubasi berbanding persekitaran peka
kloramfenikol. Walaupun begitu, pencilan E. faecium di kedua-dua persekitaran menunjukkan ekspresi gen txe (toksin) yang lebih tinggi pada masa
inkubasi 24 jam. Disebabkan fungsi sistem TA pencilan E. faecium mungkin berbeza dalam persekitaran antibiotik yang berbeza, pelbagai
keadaan persekitaran perlu dipertimbang dalam peranan sistem TA sebagai sasaran
anti-mikrob yang berpotensi. Ekspresi gen TA yang berbeza dalam persekitaran
dan titik antibiotik yang berbeza dapat mempengaruhi penemuan dan perkembangan
ubat pada masa hadapan.
Kata kunci: Enterococcus
faecium; gen axe-txe; sistem toksin-antitoksin
REFERENCES
Aizenman,
E., Engelberg-Kulka, H. & Glaser, G. 1996. An Escherichia coli chromosomal ‘addiction module’ regulated by 3’,5’-Bispyrophosphate: A model for
programmed bacterial cell death. Proceedings
of the National Academy of Sciences of the United States of America 93(12):
6059-6063.
Arias,
C.A. & Murray, B.E. 2013. The rise of the enterococcus: Beyond
vancomycin resistance. Nature Reviews
Microbiology 10(4): 266-278.
Boss, L.,
Labudda, Ł., Węgrzyn, G., Hayes, F. & Kędzierska, B. 2013.
The axe-txe complex of Enterococcus faecium presents a
multilayered mode of toxin-antitoxin gene expression
regulation. PLoS ONE 8(9): e73569.
Cárdenas-Mondragón,
M.G., Ares, M.A., Panunzi, L.G., Pacheco, S., Camorlinga-Ponce, M., Girón,
J.A., Torres, J. & De la Cruz, M.A. 2016. Transcriptional profiling of type
II toxin-antitoxin genes of Helicobacter
pylori under different environmental conditions: Identification
of Hp0967-Hp0968 system. Frontiers in
Microbiology 7: 1-14. doi:
10.3389/fmicb.2016.01872.
Chan,
W.T., Espinosa, M. & Yeo, C.C. 2016. Keeping the wolves at bay: Antitoxins
of prokaryotic type II toxin-antitoxin systems. Frontiers in Molecular Biosciences 3: 1-20.
https://doi.org/10.3389/fmolb.2016.00009.
Christensen,
S.K., Maenhaut-Michel, G., Mine, N., Gottesman, S., Gerdes, K. & Van
Melderen, L. 2004. Overproduction of the Lon protease triggers inhibition of
translation in Escherichia coli: Involvement
of the yefM-yoeB toxin-antitoxin system. Molecular
Microbiology 51(6): 1705-1717.
Chuah,
E.L., Zakaria, Z.A., Suhaili, Z., Abu Bakar, S. & Desa, M.N.M. 2014.
Antimicrobial activities of plant extracts against methicillin-susceptible and
methicillin-resistant Staphylococcus
aureus. Journal of Microbiology Research 4(1): 6-13.
CLSI.
2016. Performance Standards for
Antimicrobial. 26thedition.
Wayne, PA: Clinical and Laboratory Standard Institute.
Coussens,
N.P. & Daines, D.A. 2016. Wake me when it’s over - bacterial
toxin-antitoxin
proteins and induced dormancy. Experimental
Biology and Medicine 241(12): 1332-1342.
de Kraker,
M.E., Jarlier, V., Monen, J.C., Heuer, O.E., van de Sande, N. & Grundmann,
H. 2013. The changing epidemiology of bacteraemias in Europe: Trends from
the European antimicrobial resistance surveillance system. Clinical Microbiology and Infection 19(9): 860-868.
Grady, R.
& Hayes, F. 2003. Axe-Txe, a broad-spectrum proteic toxin-antitoxin system
specified by a multidrug-resistant, clinical isolate of Enterococcus faecium. Molecular
Microbiology 47(5): 1419-1432.
Halvorsen,
E.M., Williams, J.J., Bhimani, A.J., Billings, E.A. & Hergenrother, P.J.
2011. Txe, an endoribonuclease of the enterococcal Axe-Txe toxin-antitoxin
system, cleaves mRNA and inhibits protein synthesis. Microbiology 157(2): 387-397.
Hidron,
A.I., Edwards, J.R., Patel, J., Horan, T.C., Sievert, D.M., Pollock, D.A. &
Fridkin, S.K. 2008. Antimicrobial-resistant pathogens associated with
healthcare-associated infections: Annual summary of data reported to
the National Healthcare Safety Network at the Centers for Disease Control and
Prevention, 2006-2007. Infection Control
and Hospital Epidemiology 29(11): 996-1011.
Hu, M.X.,
Zhang, X., Li, E.L. & Feng, Y.J. 2010. Recent advancements in toxin and
antitoxin systems involved in bacterial programmed cell death. International Journal of Microbiology 2010:
1-10. https://doi.org/10.1155/2010/781430.
Janssen,
B.D., Garza-Sánchez, F. & Hayes, C.S. 2015. YoeB toxin is
activated during thermal stress. Microbiology
Open 4(4): 682-697.
Kariyama,
R., Mitsuhata, R., Chow, J.W., Clewell, D.B. & Kumon, H. 2000. Simple and
reliable multiplex PCR assay for surveillance isolates of vancomycin-resistant
enterococci. Journal of Clinical
Microbiology 38(8): 3092-3095.
Kędzierska,
B. & Hayes, F. 2016. Emerging roles of toxin-antitoxin modules in bacterial
pathogenesis. Molecules 21(6):
790-814.
Koch, S.,
Hufnagel, M., Theilacker, C. & Huebner, J. 2004. Enterococcal infections: Host
response, therapeutic, and prophylactic possibilities. Vaccine 22(7): 822-830.
Lee, K.Y.
& Lee, B.J. 2016. Structure, biology, and therapeutic application of toxin-antitoxin
systems in pathogenic bacteria. Toxins 8(305): 1-33.
Moritz,
E.M. & Hergenrother, P.J. 2007. Toxin-antitoxin systems are ubiquitous and
plasmid-encoded in vancomycin-resistant enterococci. Proceedings of the National Academy of Sciences 104(1): 311-316.
Mutschler,
H. & Meinhart, A. 2011. ε/ζ systems:
Their role in resistance, virulence, and their potential for antibiotic
development. Journal of Molecular
Medicine 89(12): 1183-1194.
Palmer,
K.L., Kos, V.N. & Gilmore, M.S. 2010. Horizontal gene transfer and the
genomics of enterococcal antibiotic resistance. Current Opinion in Microbiology 13(5): 632-639.
Rosvoll,
T.C., Pedersen, T., Sletvold, H., Johnsen, P.J., Sollid, J.E., Simonsen, G.S.,
Jensen, L.B., Nielsen, K.M. & Sundsfjord, A. 2010. PCR-based plasmid typing
in Enterococcus faecium strains
reveals widely distributed pRE25-, pRUM-, pIP501- and pHTbeta-related replicons
associated with glycopeptide resistance and stabilizing toxin-antitoxin
systems. FEMS Immunology and Medical
Microbiology 58(2): 254-268.
Schmittgen,
T.D. & Livak, K.J. 2008. Analyzing real-time PCR data by the comparative C(T) method. Nature
Protocol 3(6): 1101-1108.
Sifaoui,
F., Arthur, M., Rice, L. & Gutmann, L. 2001. Role of penicillin-binding
protein 5 in expression of ampicillin resistance and peptidoglycan structure in Enterococcus faecium. Antimicrobial Agents and Chemotherapy
45(9): 2594-2597.
Soheili,
S., Ghafourian, S., Sekawi, Z., Neela, V.K., Sadeghifard, N., Taherikalani, M.,
Khosravi, A., Ramli, R. & Hamat, R.A. 2015. The mazEF toxin-antitoxin
system as an attractive target in clinical isolates of Enterococcus faecium and Enterococcus
faecalis. Drug Design, Development
and Therapy 9: 2553-2561.
Van
Melderen, L. & Saavedra De Bast, M. 2009. Bacterial toxin-antitoxin
systems: More than selfish entities? PLoS
Genetics 5(3): e1000437-e1000442.
Wang, X.
& Wood, T.K. 2011. Toxin-antitoxin systems influence biofilm and persister
cell formation and the general stress response. Applied and Environmental Microbiology 77(16): 5577-5583.
Weng,
P.L., Ramli, R., Shamsudin, M.N., Cheah, Y.K. & Hamat, R.A. 2013. High genetic
diversity of Enterococcus faecium and Enterococcus faecalis clinical
isolates by pulsed-field gel electrophoresis and multilocus sequence typing
from a hospital in Malaysia. BioMed
Research International 2013(938937): 1-6.
Wisplinghoff,
H., Bischoff, T., Tallent, S.M., Seifert, H., Wenzel, R.P. & Edmond, M.B.
2004. Nosocomial bloodstream infections in US hospitals: Analysis of
24,179 cases from a prospective nationwide surveillance study. Clinical Infectious Diseases 39(3): 309-317.
Yang, Q.E.
& Walsh, T.R. 2017. Toxin-antitoxin systems and their role
in disseminating and maintaining antimicrobial resistance. FEMS Microbiology Reviews 41(3): 343-353.
*Corresponding author; email:
rukman@upm.edu.my
|