Sains Malaysiana 49(6)(2020): 1451-1460

http://dx.doi.org/10.17576/jsm-2020-4906-23

 

Ab-initio Calculations of the Structural, Electronic and Optical Properties of (CdSe)2 Clusters

 (Penghitungan Ab-initio Sifat Struktur, Elektronik dan Optikal Kelompok (CdSe)2)

A.I.A. ALSELAWE1*, MHH JUMALI1, G. GOPIR1 & M.M. ANAS2

 

1School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Fakulti Sains dan Teknologi, Universiti Sains Islam Malaysia (USIM), Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan Darul Khusus, Malaysia

 

Received: 17 December 2019/Accepted: 24 February 2020

 

ABSTRACT

The distinctive properties of cadmium selenide (CdSe) semiconductor situated it in a multitudinous number of applications. Although (CdSe)2 cluster has more than one isomer, the previous studies concentrated merely on one isomer. The goal of this study was to determine the various stable geometric structure isomers of (CdSe)2 clusters; also, structural, electronic, and optical properties of the stable isomers are investigated using density functional theory (DFT). First, geometry optimization calculations of the possible geometric isomers were carried out using the Broyden-Fletcher-Goldfarb-Shanno minimization (BFGS) algorithm. Total ground-state energy calculations showed that all the converged isomers have a high probability of existing in any experiment, relying on the implemented experimental technique. Twenty initial possible geometric structures were investigated, in which eleven isomers were converged. However, all of them are relaxed in the 2D planar geometry. The results showed that eleven possible stable isomers were disclosed, where the final structures of the converged isomers produced six different structures; three of them were not detected before. The rhombus structure was ascertained to be the most stable isomer followed by the trapezoidal structure of (CdSe)2. The isomers’ Cd-Se bond length are 2.50-2.74 Å, and the average Cd-Se-Cd, Se-Cd-Se angles were 64.5o-123o and 56.3o-114.2o, respectively. Furthermore, the bond angles show that the selenium atom lone-pairs electrons are responsible for shifting the isomers’ structure from the linearity. The total ground-state energy differences were 0.00-1.82 eV. The calculated highest occupied molecular orbital (HOMO), and the lowest unoccupied molecular orbital (LUMO) gap of the isomers implied that the gap depends on the symmetrical geometry of the isomer. Furthermore, it was evident that the most stable isomers are accompanied with larger gaps. The HOMO-LUMO graphs demonstrated that HOMO orbitals were localized around the selenium atom, while LUMO orbitals were distributed around both cadmium and selenium atoms. The calculated absorption spectrum was unique for each isomer. The absorption edges for the isomers are ranging from 2.53 to 3.73 eV. The results show that the obtained absorption spectra peaks’ values (nm) are smaller compared to CdSe experimental results. (CdSe)2 clusters are very active that they straightforwardly react to produce larger clusters. Finally, the results of this study corroborate with previous computational studies.

 

Keywords: Cluster; dimer cadmium selenide; geometry optimization; isomer; rhombus structure

 

ABSTRAK

Keunggulan sifat semikonduktur kadmium selenida (CdSe) menjadikannya memiliki pelbagai aplikasi dalam bidang elektronik. Meskipun kelompok (CdSe)2 mempunyai lebih daripada satu isomer, namun kajian sebelum ini hanya melaporkan satu isomer sahaja. Tujuan kajian ini dijalankan adalah untuk menentukan kepelbagaian isomer geometri kelompok (CdSe)2, disamping sifat struktur, elektronik dan pencirian sifat optik ditentukan menggunakan teori fungsian ketumpatan (DFT). Pertama pengiraan pengoptimumam sifat geometri ditentukan menggunakan algoritma Broyden-Fletcher-Geodecker-Shannov(BFGS). Jumlah tenaga keadaan dasar menunjukkan kebarangkalian setiap isomer wujud dalam kajian beruji kaji adalah tinggi, namun bergantung kepada jenis uji kaji yang dijalankan. Sejumlah sebelas daripada dua puluh struktur geometri awal yang dikaji telah berjaya. Manakala semua struktur geometri tersebut menunjukkan keadaan di satah 2D. Keputusan menunjukkan enam daripada sebelas struktur tersebut telah dilaporkan dalam keputusan kajian yang lepas, manakala tiga selebihnya belum dilaporkan sebelum ini. Struktur rombus memberikan keadaan struktur isomer yang paling stabil diikuti dengan struktur trapezoidal (CdSe)2. Panjang ikatan isomer antara Cd-Se adalah 2.5-2.74 Å dan purata sudut antara Cd-Se-Cd serta Se-Cd-Se adalah 64.5o-123o dan 56.3°-114.2°. Tambahan pula, sudut ikatan menunjukkan elektron yang tidak terikat pada atom selenium memainkan peranan mengubah struktur isomer daripada bersifat struktur linear. Jumlah perbezaan jurang nilai tenaga dalam keadaan dasar adalah sekitar 0.00-1.82 eV. Penentuan nilai jarak antara tenaga molekul orbit yang dihuni (HOMO) dan molekul orbit yang tidak dihuni (LUMO) bergantung kepada sifat geometri isomer yang bersimetri. Keputusan kajian menunjukkan isomer yang paling stabil mempunyai nilai jurang tenaga yang lebih besar. Graf taburan elektron menunjukkan orbit HOMO tertumpu di sekitar atom selenium, sementara orbit LUMO terletak di sekitar atom kadmium dan selenium. Spektrum serapan bagi setiap isomer adalah unik antara satu sama lain. Nilai tenaga serapan bermula sekitar 2.53 hingga 3.73 eV. Hasil kajian menunjukkan nilai tenaga pada puncak serapan adalah rendah sedikit berbanding kajian yang dilaporkan dalam kajian CdSe secara uji kaji disebabkan kelompok (CdSe)2 amat reaktif sehingga membentuk kelompok yang lebih besar. Kesimpulannya, keputusan kajian semasa memberi nilai sokongan kepada keputusan kajian komputasi yang lepas.  

 

Kata kunci: Isomer; kadmium selenida dimer; kelompok; pengoptimum geometri; struktur rombus

 

REFERENCES

Alivisatos, P. 2003. The use of nanocrystals in biological detection. Nature Biotechnology 22: 47-52.

Andrade, X., Strubbe, D., De Giovannini, U., Larsen, A.H., Oliveira, M.J.T., Alberdi-Rodriguez, J., Varas, A., Theophilou, I., Helbig, N., Verstraete, M.J., Stella, L., Nogueira, F., Aspuru-Guzik, A., Castro, A., Marques, M.A.L. & Rubio, A. 2015. Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems. Physical Chemistry Chemical Physics 17(47): 31371-31396.

Atchison, J.S. & Schauer, C.L. 2011. Fabrication and characterization of electrospun semiconductor nanoparticle - Polyelectrolyte ultra-fine fiber composites for sensing applications. Sensors (Basel, Switzerland) 11(11): 10372-10387.

Azpiroz, J.M., Matxain, J.M., Infante, I., Lopez, X. & Ugalde, J.M. 2013. A DFT/TDDFT study on the optoelectronic properties of the amine-capped magic (CdSe)13 nanocluster. Physical Chemistry Chemical Physics 15(26): 10996-11005.

Bhattacharya, S.K. & Kshirsagar, A. 2007. Ab initio calculations of structural and electronic properties of CdTe clusters. Physical Review B 75(3): 035402.

Brioude, A., Bellessa, J., Rabaste, S., Champagnon, B., Sphanel, L., Mugnier, J. & Plenet, J.C. 2004. Resonant Raman effect enhanced by surface plasmon excitation of CdSe nanocrystals embedded in thin SiO2 films. Journal of Applied Physics 95(5): 2744-2748.

Burnin, A., Sanville, E. & BelBruno, J.J. 2005. Experimental and computational study of the ZnnSn and ZnnSn+ Clusters. The Journal of Physical Chemistry A 109(23): 5026-5034.

Casida, M.E., Jamorski, C., Casida, K.C. & Salahub, D.R. 1998. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. The Journal of Chemical Physics 108(11): 4439-4449.

Chen, O., Zhao, J., Chauhan, V.P., Cui, J., Wong, C., Harris, D.K., Wei, H., Han, H.S., Fukumura, D., Jain, R.K. & Bawendi, M.G. 2013. Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nature Materials 12: 445-451.

Cossairt, B.M. & Owen, J.S. 2011. CdSe clusters: At the interface of small molecules and quantum dots. Chemistry of Materials 23(12): 3114-3119.

Cui, Y., Lou, Z., Wang, X., Yu, S. & Yang, M. 2015. A study of optical absorption of cysteine-capped CdSe nanoclusters using first-principles calculations. Physical Chemistry Chemical Physics 17(14): 9222-9230.

Deglmann, P., Ahlrichs, R. & Tsereteli, K. 2002. Theoretical studies of ligand-free cadmium selenide and related semiconductor clusters. The Journal of Chemical Physics 116(4): 1585-1597.

Dolai, S., Dass, A. & Sardar, R. 2013. Photophysical and redox properties of molecule-like CdSe nanoclusters. Langmuir 29(20): 6187-6193.

Dukes, A.D., McBride, J.R. & Rosenthal, S.J. 2010. Synthesis of magic-sized CdSe and CdTe nanocrystals with diisooctylphosphinic acid. Chemistry of Materials 22(23): 6402-6408.

Farrow, M.R., Chow, Y. & Woodley, S.M. 2014. Structure prediction of nanoclusters; A direct or a pre-screened search on the DFT energy landscape? Physical Chemistry Chemical Physics 16(39): 21119-21134.

Goedecker, S., Teter, M. & Hutter, J. 1996. Separable dual-space Gaussian pseudopotentials. Physical Review B 54(3): 1703-1710.

Gonze, X., Jollet, F., Abreu Araujo, F., Adams, D., Amadon, B., Applencourt, T., Audouze, C., Beuken, J.M., Bieder, J., Bokhanchuk, A., Bousquet, E., Bruneval, F., Caliste, D., Côté, M., Dahm, F., Da Pieve, F., Delaveau, M., Di Gennaro, M., Dorado, B., Espejo, C., Geneste, G., Genovese, L., Gerossier, A., Giantomassi, M., Gillet, Y., Hamann, D.R., He, L., Jomard, G., Laflamme Janssen, J., Le Roux, S., Levitt, A., Lherbier, A., Liu, F., Lukačević, I., Martin, A., Martins, C., Oliveira, M.J.T., Poncé, S., Pouillon, Y., Rangel, T., Rignanese, G.M., Romero, A.H., Rousseau, B., Rubel, O., Shukri, A.A., Stankovski, M., Torrent, M., Van Setten, M.J., Van Troeye, B., Verstraete, M.J., Waroquiers, D., Wiktor, J., Xu, B., Zhou, A. & Zwanziger, J.W. 2016. Recent developments in the ABINIT software package. Computer Physics Communications 205: 106-131.

Gutsev, L.G., Dalal, N.S., Ramachandran, B.R., Weatherford, C.A. & Gutsev, G.L. 2015. Spectral signatures of semiconductor clusters: (CdSe)16 isomers. Chemical Physics Letters 636: 121-128.

Jose, R., Zhanpeisov, N.U., Fukumura, H., Baba, Y. & Ishikawa, M. 2006. Structure−property correlation of CdSe clusters using experimental results and first-principles DFT calculations. Journal of the American Chemical Society 128(2): 629-636.

Joswig, J.O., Roy, S., Sarkar, P. & Springborg, M. 2002. Stability and bandgap of semiconductor clusters. Chemical Physics Letters 365(1): 75-81.

Karamanis, P., Maroulis, G. & Pouchan, C. 2006a. Basis set and electron correlation effects in all-electron ab initio calculations of the static dipole polarizability of small cadmium selenide clusters, (CdSe)n, n=1,2,3,4. Chemical Physics 331(1): 19-25.

Karamanis, P., Maroulis, G. & Pouchan, C. 2006b. Molecular geometry and polarizability of small cadmium selenide clusters from all-electron ab initio and density functional theory calculations. The Journal of Chemical Physics 124(7): 071101.

Kasuya, A., Sivamohan, R., Barnakov, Y.A., Dmitruk, I.M., Nirasawa, T., Romanyuk, V.R., Kumar, V., Mamykin, S.V., Tohji, K., Jeyadevan, B., Shinoda, K., Kudo, T., Terasaki, O., Liu, Z.R., Belosludov, V., Sundararajan, V. & Kawazoe, Y. 2004. Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. Nature Materials 3: 99-102.

Kilina, S., Kilin, D. & Tretiak, S. 2015. Light-driven and phonon-assisted dynamics in organic and semiconductor nanostructures. Chemical Reviews 115(12): 5929-5978.

Kim, T.H., Cho, K.S., Lee, E.K., Lee, S.J., Chae, J., Kim, J.W., Kim, D.H., Kwon, J.Y., Amaratunga, G., Lee, S.Y., Choi, B.L., Kuk, Y., Kim, J.M. & Kim, K. 2011. Full-colour quantum dot displays fabricated by transfer printing. Nature Photonics 5: 176-182.

Kisslinger, R., Hua, W. & Shankar, K. 2017. Bulk heterojunction solar cells based on blends of conjugated polymers with ii–vi and iv–vi inorganic semiconductor quantum dots. Polymers 9(2): 35.

Kolobkova, E.V., Kukushkin, D.S., Nikonorov, N.V., Sidorov, A.I. & Shakhverdov, T.A. 2015. Luminescent properties of fluorophosphate glasses with molecular cadmium selenide clusters. Optics and Spectroscopy 118(2): 224-228.

Kuçur, E., Ziegler, J. & Nann, T. 2008. Synthesis and spectroscopic characterization of fluorescent blue-emitting ultrastable CdSe clusters. Small 4(7): 883-887.

Kudera, S., Zanella, M., Giannini, C., Rizzo, A., Li, Y., Gigli, G., Cingolani, R., Ciccarella, G., Spahl, W., Parak, W.J. & Manna, L. 2007. Sequential growth of magic-size CdSe nanocrystals. Advanced Materials 19(4): 548-552.

Lee, S.R., Kim, D.S. & Choi, S.H. 2017. The conjugated phenylene polymer-modified photoanodes for quantum dot-sensitized solar cells. Journal of Nanomaterials 2017: Article ID. 9048279.

Liu, Y.H., Wang, F., Wang, Y., Gibbons, P.C. & Buhro, W.E. 2011. Lamellar assembly of cadmium selenide nanoclusters into quantum belts. Journal of the American Chemical Society 133(42): 17005-17013.

Majdabadi, A., Gaeeni, M.R., Ghamsari, M.S. & Majles-Ara, M.H. 2015. Investigation of stability and nonlinear optical properties CdSe colloidal nanocrystals. Journal of Laser Applications 27(2): 022010.

Matxain, J.M., Mercero, J.M., Fowler, J.E. & Ugalde, J.M. 2004. Clusters of II−VI materials:  CdiXi, X = S, Se, Te, i ≤ 16. The Journal of Physical Chemistry A 108(47): 10502-10508.

Matxain, J.M., Mercero, J.M., Fowler, J.E. & Ugalde, J.M. 2001. Small clusters of group-(II-VI) materials: Zni Xi, X=Se,Te, i=1–9. Physical Review A 64(5): 053201.

Nguyen, K.A., Pachter, R. & Day, P.N. 2013. Computational prediction of structures and optical excitations for nanoscale ultrasmall ZnS and CdSe clusters. Journal of Chemical Theory and Computation 9(8): 3581-3596.

Ouyang, J., Zaman, M.B., Yan, F.J., Johnston, D., Li, G., Wu, X., Leek, D., Ratcliffe, C.I., Ripmeester, J.A. & Yu, K. 2008. Multiple families of magic-sized CdSe nanocrystals with strong bandgap photoluminescence via noninjection one-pot syntheses. The Journal of Physical Chemistry C 112(36): 13805-13811.

Peng, Z.A. & Peng, X. 2002. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes:  Nucleation and growth. Journal of the American Chemical Society 124(13): 3343-3353.

Perdew, J.P. & Zunger, A. 1981. Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B 23(10): 5048-5079.

Peterson, K.A., Shepler, B.C. & Singleton, J.M. 2007. The group 12 metal chalcogenides: An accurate multireference configuration interaction and coupled cluster study. Molecular Physics 105(9): 1139-1155.

Renner, J., Worschech, L., Forchel, A., Mahapatra, S. & Brunner, K. 2006. CdSe quantum dot microdisk laser. Applied Physics Letters 89(23): 231104.

Riehle, F.S., Bienert, R., Thomann, R., Urban, G.A. & Krüger, M. 2009. Blue luminescence and superstructures from magic size clusters of CdSe. Nano Letters 9(2): 514-518.

Sanville, E., Burnin, A. & BelBruno, J.J. 2006. Experimental and computational study of small (n = 1−16) stoichiometric zinc and cadmium chalcogenide clusters. The Journal of Physical Chemistry A 110(7): 2378-2386.

Sathyamoorthy, R., Manjuladevi, V., Sudhagar, P., Senthilarasu, S. & Pal, U. 2007. Surfactant-assisted room-temperature synthesis of CdSe nanoclusters. Materials Chemistry and Physics 105(1): 20-24.

Schreuder, M.A., Xiao, K., Ivanov, I.N., Weiss, S.M. & Rosenthal, S.J. 2010. White light-emitting diodes based on ultrasmall CdSe nanocrystal electroluminescence. Nano Letters 10(2): 573-576.

Sen, S. & Chakrabarti, S. 2006. Frequency-dependent nonlinear optical properties of CdSe clusters. Physical Review B 74(20): 205435.

Sheppard, D., Terrell, R. & Henkelman, G. 2008. Optimization methods for finding minimum energy paths. The Journal of Chemical Physics 128(13): 134106.

Stinner, F.S., Lai, Y., Straus, D.B., Diroll, B.T., Kim, D.K., Murray, C.B. & Kagan, C.R. 2015. Flexible, high-speed CdSe nanocrystal integrated circuits. Nano Letters 15(10): 7155-7160.

Tao, Z., Huang, Y., Liu, X., Chen, J., Lei, W., Wang, X., Pan, L., Pan, J., Huang, Q. & Zhang, Z. 2016. High-performance photo-modulated thin-film transistor based on quantum dots/reduced graphene oxide fragment-decorated ZnO nanowires. Nano-Micro Letters 8(3): 247-253.

Troparevsky, M.C. & Chelikowsky, J.R. 2000. Structural and electronic properties of CdS and CdSe clusters. The Journal of Chemical Physics 114(2): 943-949.

Troparevsky, M.C., Kronik, L. & Chelikowsky, J.R. 2001. Ab initio absorption spectra of CdSe clusters. Physical Review B 65(3): 033311.

Troullier, N. & Martins, J.L. 1991. Efficient pseudopotentials for plane-wave calculations. Physical Review B 43(3): 1993-2006.

Wang, H., Tashiro, A., Nakamura, H., Uehara, M., Miyazaki, M., Watari, T. & Maeda, H. 2004. Synthesis of CdSe magic-sized nanocluster and its effect on nanocrystal preparation in a microfluidic reactor. Journal of Materials Research 19(11): 3157-3161.

Wu, S., Liu, H., Liu, H., Wu, Z., Du, Z. & Schelly, Z.A. 2007. Synthesis and bandgap variation of molecular-size CdSe clusters via electroporation of vesicles. Nanotechnology 18(48): 485607.

Xia, Y.S. & Zhu, C.Q. 2008. Aqueous synthesis of luminescent magic sized CdSe nanoclusters. Materials Letters 62(14): 2103-2105.

Yang, P., Tretiak, S., Masunov, A.E. & Ivanov, S. 2008. Quantum chemistry of the minimal CdSe clusters. The Journal of Chemical Physics 129(7): 074709.

Yu-Zhang, K., Guo, D.Z., Mallet, J., Molinari, M., Loualiche, A. & Troyon, M. 2008. Electrodeposition and characterization of CdSe semiconducting nanowires. Journal of Nanoscience and Nanotechnology 8(4): 2022-2028.

Yu, P. & Cardona, M. 2010. Fundamentals of Semiconductors. Berlin Heidelberg, Springer-Verlag Berlin Heidelberg.

 

*Corresponding author; email: n.salameh111@gmail.com

 

 

 

 

previous