Sains Malaysiana 49(6)(2020): 1461-1470
http://dx.doi.org/10.17576/jsm-2020-4906-24
Komposisi Ikatan Kimia dan Mekanisme Pertumbuhan Filem Nipis a-CNx oleh Teknik rf-PECVD Suhu Rendah
(Chemical Bonding Composition and Growth Mechanism of a-CNx Thin Films by Low-Temperature rf-PECVD Technique)
SITI AISYAH ABD
AZIZ & ROZIDAWATI AWANG*
Program Fizik, Fakulti Sains dan Teknologi,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan
Malaysia
Received:
4 November 2019/Accepted: 13 February 2020
ABSTRAK
Dalam kajian ini, filem nipis karbon
nitrida amorfus (a-CNx) telah dimendapkan menggunakan teknik
pemendapan wap kimia secara peningkatan plasma berfrekuensi radio, (radio-frequency plasma enhanced chemical vapor deposition, rf-PECVD). Sampel disediakan pada suhu substrat yang berbeza iaitu pada 80, 100, 120, 150 dan 180 ℃ dan kesannya ke atas morfologi, kadar pemendapan serta komposisi ikatan kimia sampel dikaji. Seterusnya, mekanisme pertumbuhan filem nipis a-CNx daripada campuran gas asetilena (C2H2) dan nitrogen (N2) dicadangkan. Ketebalan filem nipis dan morfologi filem nipis a-CNx diciri menggunakan mikroskop elektron imbasan pancaran medan (field emission scanning electron microscopy, FESEM). Manakala
komposisi ikatan kimia diperoleh daripada pencirian menggunakan spektroskopi
infra-merah jelmaan Fourier (Fourier transform infrared spectroscopy FTIR). Morfologi filem nipis a-CNx kelihatan seperti kobis bunga yang padat dan butiran yang seragam. Manakala
sampel yang dimendapkan pada suhu 100 dan 180 ℃ menunjukkan struktur
butiran bersaiz nano pada keseluruhan permukaan filem. Kadar pemendapan filem
nipis a-CNx maksimum pada suhu pemendapan 120 ℃ dan minimum
pada 180 ℃. Secara keseluruhannya, semua sampel menunjukkan kehadiran
ikatan C-N, C=C, C=N, C≡N, C-H dan N-H/O-H iaitu ikatan yang berpadanan
wujud dalam filem nipis a-CNx. Dalam kajian ini, mekanisme
pertumbuhan filem nipis a-CNx membincangkan pembentukan C-H, C-N dan keluaran
sampingan HCN hasil daripada penguraian gas C2H2 dan N2.
Pertumbuhan filem a-CNx juga disebabkan tindak balas kinetik semasa
proses pemendapan iaitu penjerapan spesies karbon dan nitrogen pada permukaan
pertumbuhan filem dan nyahjerapan spesies nitrida tepu, kesan daripada spesies
bertenaga serta mobiliti spesies yang tinggi pada permukaan pertumbuhan. Maka, komposisi ikatan kimia dan kadar pemendapan filem
dipengaruhi oleh keseimbangan antara molekul CN dengan atom C dan N mencapai
permukaan pertumbuhan filem.
Kata kunci: FTIR; morfologi; saiz nano
ABSTRACT
In this study, amorphous carbon nitride
(a-CNx) thin films were deposited using radio-frequency plasma
enhanced chemical vapor deposition (rf-PECVD) technique. Samples were prepared
at different substrate temperatures of 80, 100, 120, 150, and 180 ℃ and
the effect on morphology, deposition rate and chemical bonding composition were
studied. Next, the growth mechanism of a- CNx thin films using
acetylene (C2H2) and nitrogen (N2) as gas
precursor. Film thickness and morphology of
a-CNx thin film were characterized using field emission scanning electron microscopy, (FESEM), while the chemical
bonding composition was obtained using Fourier transform infrared spectroscopy
(FTIR). The morphology of the a-CNx thin film looks like a uniform
structural shape of a cauliflower. Whereas samples deposited at 100 and 180
℃ show nanosize granular structure on the entire surface of the film.
Maximum deposition rate of a-CNx thin films at deposition temperature of 120
℃ and minimum at 180 ℃. Overall, all samples show the presence of
C-N, C = C, C = N, C≡N, C-H and N-H /O-H bonds, which are the
corresponding bonds present in a-CNx thin films. In this study, the growth mechanism of
a-CNx thin films discusses the formation of C-H, C-N and HCN
by-products resulting from the decomposition of C2H2 and
N2 gas. The growth of a- CNx films was also due to the
kinetic reactions during the deposition process: the adsorption of carbon and
nitrogen species on the surface of the film growth and the desorption of
saturated nitride species, caused by energetic species, and the high mobility of
the species on the growth surface. Thus, the chemical bonding composition and
deposition rate of the film is influenced by the equilibrium between the CN
molecules and the C and N atoms reaching the film growth surface.
Keywords: FTIR; morphology; nano size
REFERENCES
Alibart, F., Peponas, S.,
Charvet, S. & Benlahsen, M. 2011. The effect of the terminating bonds on
the electronic properties of sputtered carbon nitride thin films. Thin Solid Films 519(10): 3430-3436.
Awang, R., Purhanudin, N.
& Salman, N.S. 2018. Effect of radio frequency power on a-CNx film
properties and its performance as humidity sensors. Sains Malaysiana 47(11): 2863-2867.
Aziz, N.F.H., Ritikos, R.,
Kamal, S.A.A., Hussain, N.S.M. & Awang, R. 2013. Effect of N2 composition ratio and annealing on morphology and optical properties of a-CNx
thin films. AIP Conference Proceedings 1571: 125-131.
Aziz, S.A.A. & Awang, R.
2017a. Influence of RF power on chemical bonding composition on a- CNx thin
films as humidity sensor. Sains Malaysiana 46(10): 1951-1958.
Aziz, S.A.A., Purhanudin, N.
& Awang, R. 2017b. Chemical bonding and humidity sensing properties of
amorphous carbon nitride (a-CNx) by acetylene gas. AIP Conference
Proceedings 1838: 020010.
Behnisch, J., Holländer, A.
& Zimmermann, H. 1993. Surface modification of polyethylene by remote dc
discharge plasma treatment. Journal of
Applied Polymer Science 49(1): 117-124.
Bousetta, A., Lu, M., Bensaoula, A.
& Schultz, A. 1994. Formation of carbon nitride films on Si(100) substrates
by electron cyclotron resonance plasma assisted vapor deposition. Applied
Physics Letters 65(6): 696-698.
Cometto, O., Dennett, C.A.,
Tsang, S.H., Short, M.P. & Teo, E.H.T. 2018. A thermal study of amorphous
and textured carbon and carbon nitride thin films via transient grating
spectroscopy. Carbon 130: 355-361.
Ferrari, A.C., Rodil, S.E. &
Robertson, J. 2003. Interpretation of infrared and Raman spectra of amorphous
carbon nitrides. Physical Review B 67(15): 155306.
Hammer, P., Baker, M.A., Lenardi,
C. & Gissler, W. 1997. Synthesis of carbon nitride films at low
temperatures. Journal of Vacuum Science & Technology A: Vacuum,
Surfaces, and Films 15(1): 107-112.
Hellgren, N., Macák, K.,
Broitman, E., Johansson, M.P., Hultman, L. & Sundgren, J. 2003. Influence
of plasma parameters on the growth and properties of magnetron sputtered CNx thin films. Journal of Applied Physics 88(1): 524-532.
Hsu, C.Y. & Hong, F.C.N.
1999. The effect of substrate temperature on the growth of CNx films with
beta-C3N4-like microcrystallites by an inductively
coupled plasma (ICP) sputtering method. Diamond
and Related Materials 8(7): 1315-1323.
Kaneko, S., Mele, P., Endo,
T., Tsuchiya, T., Tanaka, K., Yoshimura, M. & Hui, D. 2017. Electrical
properties of amorphous carbon nitride thin films for pressure sensor
applications. Carbon-related Materials in Recognition of Nobel Lectures by
Prof. Akira Suzuki in ICCE. Berlin: Springer. m.s. 261-275.
Kayed, K. 2019. The optical
band gap in amorphous carbon nitride thin films: Effect of sp2 hybridized C atoms configurations. Fullerenes Nanotubes and Carbon
Nanostructures 27(10): 796-802.
Kayed, K. 2018. Effect of
nitrogen plasma afterglow on the surface charge effect resulted during XPS
surface analysis of amorphous carbon nitride thin films. Spectrochimica Acta
- Part A: Molecular and Biomolecular Spectroscopy 199: 242-247.
Khanis, N.H., Ritikos, R.,
Othman, M., Abdul Rashid, N.M., Siti, S.M. & Rahman, S.A. 2013. Catalyst
free carbon nitride nanostructures prepared by rf-PECVD technique on hydrogenated
amorphous carbon template. Materials Chemistry and Physics 138(2-3):
514-518.
Kim, J.H., Ahn, D.H., Kim,
Y.H. & Baik, H.K. 1997. Characterization of amorphous hydrogenated carbon
nitride films prepared by plasma-enhanced chemical vapor deposition using a
helical resonator discharge. Journal of Applied Physics 82(2): 658-665.
Kundoo, S., Chattopadhyay,
K.K., Banerjee, A.N. & Nandy, S.K. 2003. Synthesis and optical
characterization of amorphous carbon nitride thin films by hot filament
assisted RF plasma CVD. Vacuum 69(4):
495-500.
Mao, J., Xiong, Z. &
Cao, L. 2018. Synthesis and optical properties in UV-visible range of carbon
nitride thin films. Journal of Vacuum Science and Technology 38(5):
369-374.
Purhanudin, N. & Awang,
R. 2016. Formation of chemical bonds and morphological studies of a- CNx:
Effects of PECVD deposition pressure. AIP Conference Proceedings 1784:
040018.
Ray, S.C., Mbiombi, W. &
Papakonstantinou, P. 2014. Electrical and electronic properties of nitrogen
doped amorphous carbon (a-CNx) thin films. Current Applied Physics 14(12): 1845- 1848.
Ritikos, R., Siong, C.C., Ab
Gani, S.M., Muhamad, M.R. & Rahman, S.A. 2009. Effect of annealing on the
optical and chemical bonding properties of hydrogenated amorphous carbon and
hydrogenated amorphous carbon nitride thin films. Japanese Journal of
Applied Physics 48(10): 101301.
Rodil, S.E., Beyer, W., Robertson,
J. & Milne, W.I. 2003. Gas evolution studies for structural
characterization of hydrogenated carbon nitride samples. Diamond and Related
Materials 12(3-7): 921-926.
Sawahata, J., Teramoto, M.,
Nakamura, S., Kametomo, K., Satake, M., Yamamoto, S.I., Itoh, K. &
Takarabe, K. 2014. Structural and optical properties of boron-doped amorphous
carbon nitride thin films synthesized by microwave electron cyclotron
resonance-plasma chemical vapor deposition. Japanese Journal of Applied
Physics 53(7): 071002.
Sjöström, H., Hultman, L.,
Sundgren, J.E., Hainsworth, S.V., Page, T.F. & Theunissen, G.S.A.M. 1996.
Structural and mechanical properties of carbon nitride CN x (0.2⩽ x ⩽0.35) films. Journal of Vacuum Science &
Technology A: Vacuum, Surfaces, and Films 14(1): 56-62.
Wright, A.N.
& Winkler, C.A. 1968. Active Nitrogen. New York: Academic Press.
Yasuda, H. & Hirotsu, T. 1978.
Critical evaluation of conditions of plasma polymerization. Journal of
Polymer Science: Polymer Chemistry Edition 16(4): 743-759.
Yasuda, H., Bumgarner, M.O. & Hillman, J.J. 1975. Polymerization of organic
compounds in an electrodeless glow discharge. IV. Hydrocarbons in a closed
system. Journal of Applied Polymer Science 19(2): 531-543.
Yu, G.Q., Lee, S.H., Lee, D.G., Na,
H.D., Park, H.S. & Lee, J.J. 2002. Synthesis and characterization of carbon
nitride thin films prepared by rf plasma enhanced chemical vapor deposition. Surface
and Coatings Technology 154(1): 68-74.
Zabolotny,
E.R. & Gesser, H. 1962. The reaction of active nitrogen with simple
hydrocarbons. The Journal of Physical Chemistry 66(5): 854-856.
*Corresponding author; email: rozida@ukm.edu.my
|