Sains Malaysiana
49(7)(2020): 1745-1754
http://dx.doi.org/10.17576/jsm-2020-4907-24
Enhancement
of Characteristics of Nitrogen-Doped Graphene Composite Materials Prepared by
Ball Milling of Graphite with Melamine: Effect of Milling Speed and Material
Ratios
(Penambahbaikan
Ciri-Ciri Bahan Komposit Nitrogen Terdop Grafin Menggunakan
Kaedah Penggilingan Bola Campuran Grafit dan Melamin: Kesan Kelajuan
Penggilingan dan Nisbah Bahan)
NURUL
AIN HUZAIFAH1, NORDIN SABLI1,2*, KOK KUAN YING3,
NUR UBAIDAH SAIDIN3 & HIKMAT S. HILAL4
1Department of Chemical and Environmental
Engineering, Faculty of
Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
2Institute of Advance Technology (ITMA), Universiti
Putra Malaysia (UPM), 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
3Malaysian Nuclear Agency, Bangi, 43000 Kajang,
Selangor Darul Ehsan, Malaysia
4Semiconductor & Solar Energy Research
Laboratory, Department of Chemistry, An-Najah National University, Nablus, West
Bank, PO Box 7, Palestine
Received: 29 October 2019/Accepted: 20 March
2020
ABSTRACT
Nitrogen-doped
graphene has been prepared using the ball milling method that is known to be
eco-friendly, scalable and economic. The parameters studied in the synthesis
were the mass ratio of starting materials (graphite and melamine) and speed of
the ball milling. To determine its structure and properties, the nitrogen-doped
graphene was characterized using Field Emission Scanning Electron Microscopy
with Energy Dispersive X-Ray (FESEM-EDX), RAMAN Spectroscopy and X-Ray
Diffraction (XRD). Based on FESEM-EDX analysis, the doped composite exhibited
nitrogen content of ~3.5%. The nitrogen-doped graphene was examined as a replacement
for platinum catalysts in fuel cells. Different composite catalysts were
evaluated using a Rotating Disk Electrode (RDE) to test the Oxidation Reduction
Reaction (ORR) performance. Based on ORR performance comparison, the composite
with highest performance was then used to fabricate a Membrane Electrode
Assembly (MEA). Testing on MEA performance was conducted on a Fuel Cell
Station, where Open Circuit Voltage (VOC) of 0.14 V was obtained.
The results indicate that the ball milling method may produce an efficient
nitrogen-doped graphene MEA electrode from graphite and melamine only. Compared
with a platinum counterpart, the new composite material electrode showed
soundly high current-potential characteristics and fuel conversion efficiency.
Keywords: Ball milling; fuel
cells; membrane electrode assembly (MEA); oxidation reduction reaction (ORR);
rotating disk electrode (RDE)
ABSTRAK
Tujuan kajian ini adalah untuk
mensintesis nitrogen terdop grafin menggunakan
kaedah penggilingan bola yang mesra alam, boleh diskala dan ekonomi. Parameter
yang dikaji dalam proses sintesis ialah nisbah jisim bahan mentah (grafit dan
melamin) dan kelajuan penggilingan bola. Untuk menentukan struktur dan sifat
sampel, nitrogen terdop grafin telah dicirikan menggunakan alatan seperti
FESEM-EDX, RAMAN Spectroscopy dan XRD. Berdasarkan keputusan analisis
FESEM-EDX, komposit yang terdop nitrogen menunjukkan kandungan nitrogen
sebanyak ~3.5%. Nitrogen terdop grafin dikaji sebagai pengganti kepada
pemangkin platinum dalam sel bahan api. Komposit pemangkin yang berbeza dinilai
menggunakan Cakera Elektrod Berputar (RDE) untuk menguji prestasi ORR.
Berdasarkan keputusan perbandingan prestasi ORR, pemangkin yang terbaik akan
digunakan untuk memfabrikasi Pemasangan Elektrod Membrane (MEA). Pemangkin ini
juga menunjukkan bacaan voltan sebanyak 0.14 V (VOC) semasa diuji di
Stesen Sel Bahan Api. Keputusan menunjukkan kaedah penggilingan bola mungkin
boleh menghasilkan elektrod nitrogen terdop grafin MEA yang efisien daripada
grafit dan melamin sahaja. Berbanding dengan platinum, bahan komposit elektrod
yang baru ini menunjukkan ciri-ciri arus elektrik yang tinggi dan kecekapan
penukaran bahan api.
Kata kunci: Cakera elektrod
berputar (RDE); pemasangan elektrod membran (MEA); penggilingan bola, sel bahan
api; tindak balas pengurangan pengoksidaan (ORR)
REFERENCES
Allen, M.J.,
Tung, V.C. & Kaner, R.B. 2010. Honeycomb carbon: A review of graphene. Chem.
Rev. 110: 132-145.
Geng, D.,
Yang, S., Zhang, Y., Yang, J., Liu, J., Li, R. & Sham, T. 2011. Nitrogen
doping effects on the structure of graphene. Applied
Surface Science 257(21): 9193-9198.
Girit, C.O.,
Meyer, J.C., Erni, R., Rossell, M.D., Kisielowski, C., Yang, L. & Zettl, A.
2009. Graphene at the edge: Stability and dynamics. Science 323(5922):
1705-1708.
He, C., Desai,
S., Brown, G. & Bollepalli, S. 2005. PEM fuel cell catalysts: Cost,
performance, and durability. Interface-Electrochemical Society 14(3):
41-46.
Kurungot, S.,
Maraveedu, U.S. & Ramadas, S. 2016. A process for the preparation of
nitrogen doped carbon nanohorns for oxygen reduction electrocatalysis.
http://www.freepatentsonline.com/y2016/0240861.html.
Leon, V.,
Quintana, M., Herrero, M.A., Fierro, J.L., de la Hoz, A., Prato, M. &
Vazquez, E. 2011. Few-layer graphenes from ball-milling of graphite with
melamine. Chemical Communications 47(39): 10936-10938.
Maddi, C.,
Bourquard, F., Barnier, V., Avila, J., Asensio, M.C., Tite, T., Donnet, C.
& Garrelie, F. 2018. Nano-architecture of nitrogen-doped graphene films
synthesized from a solid CN source. Scientific Report 8(3247): 1-13.
Novoselov,
K.S., Geim, A.K., Morozov, S.V, Jiang, D., Zhang, Y., Dubonos, S.V. &
Firsov, A.A. 2004. Electric field effect in atomically thin carbon films. Science 306: 666-669.
Olson, D.W.
2012. Graphite. USGS.
http://minerals.usgs.gov/minerals/pubs/country/2012/myb3-2012-my.pdf.
Qu, L., Liu,
Y., Baek, J.B. & Dai, L. 2010. Nitrogen-doped graphene as efficient metal
free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3):
1321-1326.
Shams, S.S.,
Zhang, R. & Zhu, J. 2015. Graphene synthesis: A review. Materials
Science- Poland 33(3): 566-578.
Suprun, A.D.
& Shmeleva, L.V. 2017. Features of the generalized dynamics of quasiparticles
in graphene. Nanoscale Research Letters 12(1): 1-9.
Wu, Z.S., Ren,
W., Xu, L., Li, F. & Cheng, H.M. 2011. Doped graphene sheets as anode
materials with superhigh rate and large capacity for lithium ion. ACS Nano 5(7): 5463-5471.
Xu, H., Ma, L.
& Jin, Z. 2018. Nitrogen-doped graphene: Synthesis, characterizations and
energy applications. Journal of Energy Chemistry 27(1): 146-160.
Xue, Y., Chen,
H., Qu, J. & Dai, L. 2015. Nitrogen-doped graphene by ball-milling graphite
with melamine for energy conversion and storage. 2D Materials 2(4):
44001.
*Corresponding author; email nordin_sab@upm.edu.my
|