Sains Malaysiana 49(9)(2020): 2043-2051
http://dx.doi.org/10.17576/jsm-2020-4909-02
Temporal
Discrete Z-Number and Its Application in Assessing EEG Signal Data of Epileptic
Seizure
(Nombor-Z Diskret Temporal dan Aplikasinya dalam
Menilai Data Signal EEG Sawan Epilepsi)
MUJAHID
ABDULLAHI1,2, TAHIR AHMAD1* & VINOD RAMACHANDRAN3
1Department of Mathematical Sciences, Faculty of
Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Darul Takzim, Malaysia
2Department of Mathematics
and Computer Science, Faculty of Natural and Applied Sciences, Sule Lamido
University 048 SLU Kafin Hausa, Jigawa, Nigeria
3Level 23, Menara CIMB, Jalan Stesen Sentral 2, Kuala
Lumpur Sentral, 50470 Kuala Lumpur, Federal Territory, Malaysia
Received:
15 January 2020/Accepted: 10 May 2020
ABSTRACT
Analysis
and modeling of a complex physical system, particularly EEG signals involved
vague and uncertain information. The approach introduced by Kosanovic using
temporal fuzzy set to model a complex system particularly the EEG signal does
not address the problem of uncertainty for the time of occurrence. In this
paper, an ordered discrete Z-number is used to construct temporal discrete
Z-number to assess EEG signal data of an epileptic seizure for the first time.
The proposed temporal discrete Z-number is able to accommodate the problem of
uncertainty with regards to the time of occurrence for a given seizure by using
and modifying the method for measuring the uncertainty of Z-number.
Keywords: Discrete
Z-number; dynamic
system; fuzzy set; uncertainty; Z-number
ABSTRAK
Pemodelan
dan analisis sesuatu sistem yang kompleks, khususnya tentang kesamaran dan kebolehpercayaan melibatkan maklumat
isyarat EEG itu sendiri. Pendekatan yang diperkenalkan oleh Kosanovic
menggunakan set kabur temporal bagi memodelkan sesuatu sistem yang kompleks
tidak menangani masalah ketidakpastian masa kejadian akan maklumat yang
tercerap. Dalam makalah
ini, nombor-Z diskret tertib digunakan bagi membina nombor-Z diskret temporal
untuk menganalisis isyarat EEG yang tercerap ketika
serangan sawan, diperkenalkan buat julung kalinya. Nombor-Z diskret temporal
mampu menangani masalah ketidakpastian berhubung dengan pemasalahan masa
kejadian bagi sesuatu serangan sawan dengan menggunakan pengubahsuaian yang
dibuat terhadap kaedah mengukur ketidakpastian bagi nombor-Z.
Kata
kunci: Ketidakpastian; nombor-Z; nombor-Z diskret; set kabur; sistem dinamik
REFERENCES
Abdullahi, M.,
Ahmad, T. & Ramachandran, V. 2020. Ordered discrete and continuous
Z-numbers. Malaysia Journal of Fundamental and Applied Sciences (In
Press).
Aliev, R. &
Guirimov, B. 2018. Z-number clustering based on general type-2 fuzzy sets. In International
Conference on Theory and Applications of Fuzzy Systems and Soft Computing. Springer,
Cham. pp. 270-278.
Aliev, R.A.
& Kreinovich, V. 2017. Z-Numbers and type-2 fuzzy sets: A representation
result. Intelligent Automation & Soft Computing 24(1): 1-5.
Aliev, R.A.,
Alizadeh, A.V. & Huseynov, O.H. 2015. The arithmetic of discrete Z-numbers. Information Sciences 290: 134-155.
Casasnovas, J.
& Riera, J.V. 2006. On the addition of discrete fuzzy numbers. In Proceedings
of the 5th WSEAS International Conference on Telecommunications and
Informatics. World Scientific and Engineering Academy and Society (WSEAS).
pp. 432-437.
Fauziah, B.Z.
2008. Dynamic profiling of EEG data during seizure using fuzzy information
space. Universiti Teknologi Malaysia, Ph.D. Thesis (Unpublished).
Kang, B., Deng,
Y., Hewage, K. & Sadiq, R. 2018. A method of measuring uncertainty for
Z-number. IEEE Transactions on Fuzzy Systems 27(4): 731-738.
Kosanovic, B.R.,
Chaparro, L.F. & Sclabassi, R.J. 1996. Signal analysis in fuzzy information
space. Fuzzy Sets and Systems 77(1): 49-62.
Kosko, B. 1990.
Fuzziness vs. probability. International Journal of General System 17(2-3): 211-240.
Nagypál,
G. & Motik, B. 2003. A fuzzy model for representing uncertain, subjective,
and vague temporal knowledge in ontologies. In OTM Confederated
International Conferences on the Move to Meaningful Internet Systems.
Springer, Berlin, Heidelberg. pp. 906-923.
Mendel,
J.M. & John, R.B. 2002. Type-2 fuzzy sets made simple. IEEE
Transactions on Fuzzy Systems 10(2): 117-127.
Rangasamy,
P. 2009. A note on properties of temporal intuitionistic fuzzy sets. In Notes on IFS Conference Proceedings. 15(1): 42-48.
Sharmila,
A. & Geethanjali, P. 2019. A review on the pattern detection methods for
epilepsy seizure detection from EEG signals. Biomedical
Engineering/Biomedizinische Technik 64(5): 507-517.
Zadeh,
L.A. 2011. A note on Z-numbers. Information Sciences 181(14): 2923-2932.
*Corresponding author; email: tahir@ibnusina.utm.my
|